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Executive Summary

Prototyping and experimentation are key to bringing research ideas to the market. With this in
mind, a considerable amount of e�ort has been expended WP-D to realizing, via prototypes, the
various concepts developed in the work package. The e�ort has resulted in seven prototypes whereby
�ve where shown at the FuNeMS 2012 event and two at the �nal public event organized by SAIL.
Selected components of the prototypes have also been made available to the public via open source.
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1 Introduction

Prototyping and experimentation are key to bring research ideas to the market. The purpose of
prototyping is to build an early model for evaluating the new concepts or enhancing the precision of
details. The result of prototyping can serve as a base for speci�cation of a real system to be built. In
SAIL WP-D, a considerable amount of e�ort has been expended in prototyping the various concepts
developed in the work package. Most of the prototypes have been developed around a large-scale
testbed that spanned four countries.
These prototypes have been demonstrated at two public events. The �rst batch of demonstrations

were done at the `Future Network & Moble Summit' (FuNeMS 2012) in Berlin Germany, from
4-6 July 2012 [1]. During this event, a Cloud Networking (CloNe) integrated testbed showing
dynamic creation of Flash Network Slice (FNS)s spanning several countries (Section 2.1), a resource
management system supporting dynamic resource allocation (Section 2.2), a virtualization library
for networks (Section 2.3), model-driven resource provisioning for elastic video (Section 2.4) and an
e�cient technique for transferring bulk-data (Section 2.5) where shown.
The second batch of demonstrations were done at the `Future Media Distribution using Informa-

tion Centric Networks' event in Stockholm Sweden, on February 13, 2013 [2]. During this event,
two more prototypes were demonstrated: an elastic deployment of Network of Information (NetInf)
on the CloNe testbed using an adaptive deployment toolkit (Section 2.7) and a portal for the CloNe
infrastructure showing the administrator's view of the distributed cloud (Section 2.6).
The purpose of this document is to summarize the various prototypes by (1) providing a de-

scription and a short overview of the results and (2) including the posters displayed during the
events.

SAIL Public 1
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2 Summary of Prototyped Demonstrators

This section provides a summary of the demonstrated prototypes. Further details of the prototypes
are also available in the referred publications as well as the posters of the demonstrations that are
also included in the appendix of this deliverable.

2.1 Dynamic Enterprise on the CloNe Integrated Testbed

The CloNe work package set about to provide integrated on-demand allocation of computing, storage
and networking across data centres and operator networks in a seamless way. More speci�cally, the
prototyping activity has focused on the integration of wide area network services with infrastructure
as a service providing customers with the ability to create distributed infrastructures at once. The
objective behind the CloNe integarted testbed was to demonstrate the feasibility of this concept.
The implemented testbed consists of four data centers: one in the UK(based on OpenStack), one in
Sweden(also based on OpenStack), one in France(based on OpenNebula) and one in Portugal(also
based on OpenNebula). The data centers are interconnected by an emulated `operator network'
running an MPLS backbone, which allowed creating FNSs with Multi-Protocol Label Switching
(MPLS) Virtual Private Network (VPN)s.
On this testbed, a customer's request for virtual infrastructure is speci�ed with the Virtual

eXecution Description Language (VXDL) description language (which may optionally be done with
a Graphical User Interface (GUI)). CloudWeaver, which runs in the distributed infrastructure layer,
decomposes this request into components to be provisioned by individual data centers/operator
network domains. These requests are then forwarded to the data center domains as Open Cloud
Compute Interface (OCCI) requests and to the operator network domains as Open Cloud Network
Interface (OCNI) requests. A key protocol running in the Distributed Control Plane (DCP) of the
CloNe architecture, the Link Negotiation Protocol (LNP), provides a mechanism for data center
and operator network domains to negotiate parameters such as peering protocols, link bandwidth
and encapsulation protocols, in order to provision the FNS. Figure 2.1b summarizes the various
components and their interactions. Details of this testbed have been document in SAIL deliverable
D.D.2 [3].
The functionalities implemented in the CloNe integrated testbed were demonstrated by a `dynamic

enterprise' use case scenario whereby a retailer of electronic appliances (the customer) wants to
o�er its products through a web shop (see Figure 2.1a). The web shop is to be integrated with the
database used for its traditional shops. That database runs on the enterprise's own IT infrastructure
in Sweden. The web front ends are to be provided from cloud data centers located in the targeted
markets, in this case UK, Portugal and France.
The prototype shows the feasibility of creating FNSs that span multiple administrative domains

in a non-disruptive manner by building upon existing cloud and networking technologies.

2.2 Dynamic Resource Management

The service model for an Infrastructure-as-a-Service cloud includes the cloud service provider op-
erating the physical infrastructure and the customer running its applications on the provisioned
virtual infrastructure. Customers specify how their applications should be run through Service

SAIL Public 2
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(a) The use-case scenario and testbed (b) Key components and their interaction

Figure 2.1: The integrated CloNe testbed

Level Agreement (SLA)s while the provider speci�es how its physical resources should be allocated
through a management objective. Examples of management objective include balanced load across
servers and minimal energy consumption by the infrastructure. A key task of resource management
is to allocate resources of the physical infrastructure such that the SLAs as well as the management
objective are achieved.
The CloNe management architecture [4] realizes resource management functionality through two

management functions: a `resource allocation' function that determines how resources are allocated
to new requests for virtual infrastructure and a `resource optimization' function that adapts an
existing allocation of resources such that customer SLAs as well as the management objective are
achieved at all times. The CloNe prototype includes generic realizations of these functions in the
OpenStack cloud platform [5] and their instantiations for selected management objectives.
The implemented resource allocation function extends the OpenStack least-cost scheduler. The

extensions include a set of �lters and cost functions that instantiate the scheduler for balanced-load
and minimized energy consumption objectives. The implemented resource optimization function is
realized by a generic gossip-based protocol called Generic Resource Management Protocol (GRMP).
Theoretical and simulation studies of the protocol have shown that GRMP can scale to well beyond
100,000 servers [6]. The prototype includes instantiations of the GRMP protocol that realize the
two management objectives above.
The feasibility as well as the performance of the resource management system was evaluated on a

testbed consisting of 9 servers running an average of 80 Virtual Machine (VM)s at any time. A load
generator generates requests to start and stop VMs at di�erent rates. We measured how well the
management objectives are achieved and the cost of achieving those objectives. Figure 2.2 shows
the results for the balanced load objective. The �gure on left shows how well the load is balanced
for di�erent VM churn rates and when dynamic adaptation is disabled. The �gure on right shows
the associated cost. The �gure shows that the load across the servers is well-balanced when there
is little or no churn of VMs while the e�ectiveness degrades for high churn settings. In conjunction
with the cost �gure, this implies that optimization through dynamic adaptation is cost-e�ective
only up to a certain rate of addition/removal of VMs in the system. The details of the evaluation
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result are available in [7].

(a) E�ectiveness of resource allocation (normalized to
avg. utilization)

(b) Cost of dynamic adaptation

Figure 2.2: E�ectiveness and e�ciency of dynamic resource allocation for balanced-load objective

2.3 libNetvirt: a Network Virtualization Library

libNetVirt: it is an Application Programming Interface (API) that creates a network abstraction
layer to allow for the management of di�erent network technologies in a programmable way. Cur-
rently, libNetVirt can control both OpenFlow and MPLS based networks. It uses single router
abstraction to describe a network. The description includes the endpoints of the network, the
constraints of speci�c paths as well as type of forwarding required for the underlying network.
libNetVirt is composed of a common interface and a set of drivers (See Figure 2.3). Each driver im-
plements the required con�guration for a speci�c underlying technology. Both an OpenFlow driver
and a L3 VPN driver are implemented as a proof of concept of this solution. libNetVirt o�ers two
APIs in C and Python to operate the network. libNetVirt can be used in di�erent ways:

1. Integrated with the network manager of a data center managed with OpenFlow. It allows the
creation of di�erent virtual networks between endpoints.

2. Directly integrated inside the network resource management system of the Network Operator
to set up a MPLS network. When the network domain receives the request it calls libNetVirt
with the python API.

3. libNetVirt has been integrated with pyOCNI and a specialized OCNI mixin for OpenFlow has
been de�ned and implemented.

4. Set up the network automatically from a saved network description. libNetVirt uses an
eXentisible Markup Language (XML) format to describe the network.

OpenFlow in libNetVirt permits a �exible and fast way to verify that a particular resource belongs
to a speci�c FNS and to establish end to end path between two resources in a single domain.
If multiple domains are present, OpenFlow can also be used to interconnect them. The use of
OpenFlow in some parts of the SAIL test bed provided us with the following experiences:

• The use of a global view permits the use logically centralized algorithms to enforce isolation
in the network.

SAIL Public 4
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Figure 2.3: The architecture of libNetVirt (left) and the testbed it was evaluated on (right)

• Using OpenFlow for fault management permits quick reaction if a disruption in the network
is created. The global view permits receiving noti�cations when a network element is down
and reroute the a�ected tra�c to another path.

• However, if the use of OpenFlow is reactive (the path is computed and installed when a �ow
arrives), a small delay is introduced in the �rst packet of the �ow.

• OpenFlow controller can be tested in a simulated environment that approximates very well a
real network environment. This permits the experimentation with the network for unexpected
events without a�ecting the production network.

The prototype is shows the feasibly of managing di�erent types of networks via the same API, in
a similar manner to the popular libvirt API for platform virtualization.

2.4 Model-driven Resource Allocation for Elastic Video

Many applications deployed within clouds have dynamic needs in term of resources. Buzz e�ects,
�ash crowds and other types of gossip events may explain the volatility of their workload. Cloud
operators may face tough challenges in conveying the proper level of QoS to their hosted applications
when these applications exhibit dynamic workload pro�les. They may then have crucial needs for
e�cient schemes to dynamically and rapidly allocate/release resources when an application needs
it. Capturing these needs and translating them into action are real challenges for a Cloud Network
controller.
In this demo, we demonstrate the VXDL language and CloudWeaver extensions to adequately

model and enforce high elasticity within a cloud network so as to cope with the need of a hosted,
very dynamic application. The purpose of this demo is twofold. First, we use our theoretical model
[8, 9] to reproduce the workload dynamics of an-demand service that may be subject to buzz e�ects
and �ash-crowds types of events. This model exhibits buzz-free period (normal behavior) and buzz
period (abnormal behavior) where the instantaneous workload of the e-service surges very sharply.
Second, using this model as the workload generator, we use the VXDL language and CloudWeaver
(Cloud Network Controller) extensions to dynamically adjust the level of provisioned resource that
permits to adequately host the application. A new feature in this process stems from the use of large
deviation principle that assists the decision making process for allocating or releasing resources.
The Use Case is centred on a Video on Demand (VoD) service. A server broadcasts video to a

huge number of potential watchers. As the number of watchers varies, so does the workload on the
VoD service (we assume no multicast transfer here).

SAIL Public 5



Document: FP7-ICT-2009-5-257448-SAIL/D-5.5
Date: 2013-02-28 Security: Public
Status: Final Version: 1.0

This demo is deployed on the Grid'5000 platform. Agents acting as the VoD server or as potential
viewers are deployed on geographically distant nodes. The popularity of a video is directly linked
to the number of agents who have �seen� it in the past. On top of this, buzz (�ash crowd) caused
by an external event may occur and cause a sudden surge in the popularity of a video. In the demo,
we are able to directly trigger buzz. Overall, the subsequent workload exhibit large and sometimes
steep variations in its behavior.
At the VoD server, we collect measurements data and we use this information to better adjust

the level of resource dedicated to this application. Of course, we consider a QoS objective but we
also try to minimize the number of recon�gurations/reallocations in relation to CAPEX/OPEX.
Our allocation scheme is mainly based on the large deviation properties. We rely on the virtual
description language to dynamically provision and release resources to match the current need.
This prototype shows that our approach of model-driven resource allocation is e�ective in handling

high-variability resource demands that are characteristic of video distribution systems.

2.5 In-Network Datacenter for Bulk Data Transfer

Emerging applications demand more e�cient ways to handle the large amount of tra�c they generate
and send across sites. The current architecture solves the performance issue by caching the content
at nodes on network edges. However, this is not suitable for dynamic behaviour of many services
such as video streaming and bulk �le transfers. Often data compression and load balancing are
used to alleviate the situation. We attempted to explore an alternative way for caching data more
e�ciently; in particular, ones that are bulk in nature as it will signi�cantly improve the network
utilisation.
We proposed In-Network data center (In-NetDC) [10], which follows NetStitcher's store-and-

forward principles [11] enabling content caching at intermediate nodes between the source and the
destination where the actual consumption takes place. Note that, a simple solution such as end-
to-end transfers is not possible due to typical rate-limiting policies enforced by network operators.
In-NetDC di�ers from previous solutions as the caching nodes connect directly to the core network
via high capacity links avoiding hops to the network edges where congestion level is higher than the
core in typical scenarios.
To illustrate the performance of In-NetDC, a realistic topology that preserves the statistical

properties of the tra�c with regards to average delay, throughput and geographical constraints of a
real network was used. We simulated the tra�c using a simple non-stationary process with adhoc
Gaussian as background tra�c. The experiment was performed based on a network emulator in
comparison with traditional end-to-end (E2E) transfer, BitTorrent and random store-and-forward
mechanism. Furthermore, we performed real-world experiments using di�erent chunk sizes of �les
transferred between data centres in the US and ones in the UK to determine their e�ects on transfer
time.
From Figure 2.4, we can see that In-NetDC outperforms other existing solutions and the required

transfer time between caching nodes in core networks signi�cantly shorter than that of between edge
and core for all chunk sizes. In addition to this performance advantage, our approach also provides
on-demand deployment capabilities to create/terminate in-network resources of the required capac-
ity at the required time through our OCCI implementation. Further details of the our approach
and the evaluation results are available in [10].

2.6 An Administrative Portal for a Distributed Cloud

In order to complement the faithful vision of the CloNe service in a customer perspective, we have
worked towards providing an organized and user-friendly view of distributed CloNe information
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Figure 2.4: Performance of In-Net DC vs. other technologies

available in the system in an administrative perspective.
This perspective is re�ected in a monitoring portal that provides a high level map of the domains

that are part of the CloNe testbed and how these domains relate to each other. Moreover, important
Wide Area Network (WAN) and data center information is provided along with virtual infrastructure
and customer information:

• On the WAN side it is possible to see the type of services that each network operator can o�er
(L2 or L3), the amount of resources that can be used within that domain (e.g. number of FNSs
per end-point, Service Provider Logical Link (SLL)s' available capacity), the FNSs that are
deployed within that domain, etc. Depending on the SLA the portal agent has with the various
administrative domains, the information available regarding a given domain can be much more
detailed and could include, the status of provider edge equipments and inter-domain related
information with respect to the LNP such as IP addresses used in the inter-domain Tenant
Logical Link (TLL)s. (In the prototype, detailed information was available for the PTIN
network domain.)

• On the data center side it is possible to see the amount of resources that can be used by the
CloNe system, status of SLLs and the resources allocated within each data center.

• Virtual Infrastructure: it is possible to see the entire virtual infrastructure as well as where
each individual part of it is allocated, i.e. in which domain.

• Customer: see the customer name, pro�le (in terms of Quality of Service (QoS) and Security)
as well as which virtual infrastructure it has running on the CloNe system.

This prototype allowed us to assess the type and level of information required for a CloNe system
broker to have with respect to the individual administrative domain, the virtual infrastructure, and
the customer itself.
Moreover, it allowed us to understand how this information could be organized, made visible and

understandable to a possible CloNe system administrator. In the end, it also became a framework
that allows the demonstration of the concept, even from an administrative perspective.
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2.7 Elastic NetInf on the CloNe Testbed

Virtualizing NetInf allows allocating resources where NetInf bene�ts most. In our demonstration,
we showed a dynamic adaptation of NetInf's resources. In a typical use case, content with rising
popularity results in (a) higher usage intensity at (b) di�erent requester's locations. Today's NetInf
replaces less popular content in caches by more popular content. This reduces the quality of access
for such dropped content. In such a situation, increasing the cache capacity is desirable. We leverage
the potential of cloud infrastructure's on-demand provisioning feature to swiftly provide NetInf with
new resources at appropriate locations. This enables NetInf to handle content with rising popularity
without reducing the access quality of the other content.
Remarkable points of the demonstration:

• Live presentation of interactively controlled load generators, of load measurements, of thresh-
old decisions, of and virtual machine (VM) deployment.

• VMs are deployed on all testbed locations from all partners (EAB, HP, PTIN, IT). Load
generators are operated from geographically di�erent locations (UPB, KTH).

• Customized visualizations for the demonstration showing (1) The topological relationships
and NetInf's virtual infrastructure and (2) Live plots for performance indicators and measured
end-user's quality of service

Virtualized NetInf on top of CloNe realizes a deployment without the need of high upfront in-
vestments for exchanging hardware. Having cloud resource available today, our work enables a
distributed deployment of NetInf in a very near future. This will shorten the time to evaluate
NetInf in a worldwide deployment, which eases future migration steps. In addition CloNe o�ers
network connectivity service and load-adaptive deployment. While the �rst enables NetInf to have
guarantees for management communication, the latter one allocates that amount of resources at
geographically distributed sites, which optimizes NetInf's performance.
CloNe's Application Deployment Toolkit (ADT) has two new facades: At �rst, its architecture

can be customized to a wide range of application and even to NetInf [12]. Its steering concept intro-
duces a new exchange of communication between infrastructure and application level. This enables
optimization potential not utilized today. At second, the prototype shows a working, practical eval-
uation of the architecture across multiple layers: NetInf is running on NetInf's virtual infrastructure
managed by ADT and deployed on the CloNe testbed. Both the architecture and the prototype lay
the foundation of future research in topologically optimized application deployment.
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3 Conclusion

The main ambition of the prototyping activity in CloNe had been to demonstrate the capabilities
of an evolved Cloud Networking model. This model aims for a extensible architecture, which allows
the deployment of complex applications over heterogeneous networks spread over multiple domains.
The various concepts that were developed in the context of this model had been prototyped and
demonstrated publicly at two separate events. We believe that these prototypes have ful�lled their
goal of proving the feasibility of the model in general, and the various concepts in particular.
Beyond the public demonstration, various components of the demonstrated prototypes have been

contributed to open source. This includes the OCNI speci�cation which was part of the CloNe
integrated testbed [13], the scheduler component of the dynamic resource management extension to
OpenStack [14] and the libNetVirt implementation [15].
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Appendix: Posters for Demonstrated

Prototypes

Dynamic Enterprise on the CloNe Integrated Testbed
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TECHNOLOGY HIGHLIGHTS 

Cloud Fabric Controller: 
Openstack, OpenNebula 

VPN & Network Technology: 
L3 MPLS, IPSec, GRE, OpenVSwitch 

Network Virtualization: 
Diverter, OpenFlow, VLAN 

Starting an European-spanning Webshop Service in Minutes using  

Distributed Clouds and Flash Network Slices. 

Webshop System Spec + Service Constraints/Goals  Goal Translation & 

Constraint Resolution  Virtual Infrastructure Description  Virtual Resource 

Request using OCCI/OCNI to Networks & Clouds  Distributed Control Plane to 

negotiate FNS protocols, properties & Instantiation  Webshop service deployed! 

Graphical specification in VXDL language 

Decomposition of the Virtual Infrastructure 

Deployed Webshop 

Real protocols, real implementation 

No emulation or simulation  



User interaction model 
 
 

Interdomain Flash Network Slice Creation 
 

SAIL Cloud Networking (CloNe) 

SCENARIO 

Deploying a European-spanning Webshop Service in 
minutes using distributed clouds and Flash Network Slices. 

INTERFACES 

Inter-domain 
Interfaces: 
OCNI, OCCI, DCP 

Description Language: 
VXDL 

Interface Technology: 
HTTP Rest, MQ 

TECHNOLOGY HIGHLIGHTS 

Cloud Fabric Controller: 
Openstack, OpenNebula 
VPN & Network 
Technology: 
L3 MPLS, IPSec, GRE, 
OpenVSwitch 
Network Virtualization: 
Diverter, OpenFlow, VLAN 

ORCHESTRATOR 

Decomposition of the Virtual 
Infrastructure 

Main project contributions 
 
 
 

“A Flash Network Slice is an 
elastic network resource with 

customizable performance and 
isolation properties that can be 
allocated in a similar timescale 
as other basic cloud resources 
such as compute and storage.” 
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1. User defines desired Virtual Infrastructure. 
2. Goal translation and decomposition. 
3. Deployment of infrastructure components. 
4. Connection of the distributed infrastructure. 

Technology 
 
 

DEMONSTRATOR 

Real protocols, real implementation 
No emulation or simulation  
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TECHNOLOGY HIGHLIGHTS 

WORKFLOW 
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Message Exchange Diagram 

Summary 

A multi-domain protocol, with 
support for multiple 

technologies, for creating 
virtual links belonging to a 

virtual infrastructure that span 
multiple domains. 

The protocol is part of the  
Distributed Control Plane 

(DCP) of CloNe. 
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Example DC-NO Setup 

Hareesh Puthalath, Bob Melander1, João Soares, Márcio Melo2  

Ericsson1, PT Inovação2 

Highlights 

Network Technologies 
L3 MPLS VPN, VPLS , Openflow.. 
Protocols 
OSPF, RIP, BGP, ... 
Encapsulation schemes 
VLAN,GRE, IEEE 802.1ah  ... 
 

Message example 



Document: FP7-ICT-2009-5-257448-SAIL/D-5.5
Date: 2013-02-28 Security: Public
Status: Final Version: 1.0

Dynamic Resource Management

SAIL Public 14



Resource Allocation 
 

The implemented resource allocation function extends the 
OpenStack least-cost scheduler (flowchart shown below). 
The extensions include a set of filters and cost functions 
that instantiate the scheduler for balanced-load and 
minimized energy consumption objectives. 

 

Resource Optimization 
 

The resource optimization function is realized by a generic 
gossip-based protocol called GRMP [1,3] (pseudocode 
shown below). Theoretical and simulation studies [2,3] show 
that GRMP can scale to well beyond 100,000 servers. The 
prototype includes instantiations of GRMP’s three abstract 
methods that realize the two management objectives above. 

Background 
 

The service model for an Infrastructure-as-a-Service 
cloud includes the cloud service provider operating the 
physical infrastructure and the customer running its 
applications on the provisioned virtual infrastructure. In this 
model, customers specify how their applications should be 
run through SLAs while the provider specifies how its 
physical resources should be allocated through a 
management objective. A key task of resource 
management is to allocate resources of the physical 
infrastructure such that the SLAs as well as the 
management objective are achieved. 

Management Objectives 
 

The management objective of a service provider depends 
on factors such as its customers, their applications, its 
physical infrastructure and business strategy. Examples of 
management objective include:  

• balanced load across servers 
• minimal energy consumption by the infrastructure 
• fair allocation of resources to customers  
• service differentiation among different service classes 

Resource Management Functions 
 

The CloNe management architecture realizes resource 
management functionality through two management 
functions: a resource allocation function that determines 
how resources are allocated to new requests for virtual 
infrastructure  and a resource optimization function that 
adapts an existing allocation of resources such that 
customer SLAs as well as the management objective are 
achieved at all times. The CloNe prototype includes generic 
realizations of these functions in the OpenStack cloud 
platform. It also includes instantiations for select 
management objectives. 

Dynamic Resource Management  
with Management Objectives 

Fetahi Wuhib1, Rolf Stadler1, Hans Lindgren1 and Hareesh Puthalath2  
1KTH Royal Institute of Technology, Stockholm, Sweden; 2Ericsson Research, Stockholm, Sweden 

Evaluation Results 
 

We evaluate the performance of 
the resource management system 
on a testbed consisting of 9 servers  
(24 cores, 64GB RAM each) 
running an average of 80 VMs at 
any given time. A load generator 
generates requests to start and 
stop VMs at different rates. For 
balanced load objective, the plot on 
top shows how well the load is 
balanced for different VM churn 
rates and when dynamic adaptation 
is disabled while the plot on the 
bottom shows the associated cost. 
An interesting observation is that 
optimization through dynamic 
adaptation is cost-effective only up 
to a certain churn rate. 

[1]  F. Wuhib, R. Stadler, H. Lindgren: “Dynamic Resource Allocation with Management 
Objectives: Implementation for an OpenStack Cloud,” submitted for publication. 

[2]  F. Wuhib, R. Stadler, M. Spreitzer: “A Gossip Protocol for Dynamic Resource Management 
in Large Cloud Environments,” IEEE Transactions on Network and Service Management 
(TNSM), Vol. 9, No. 2, June 2012. 

[3] R. Yanggratoke, F. Wuhib, R. Stadler: “Gossip-based Resource Allocation for Green 
Computing in Large Clouds,” International Conference on Network and Service 
Management (CNSM), Paris, France, October 24-28, 2011.  
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LibNetVirt:  
the Network Virtualization Library 

Daniel Turull, Markus Hidell, Peter Sjödin1 
1KTH 

 Demo 

 Architectural Design 

 Objectives 

• Define and develop a control framework for defining and instantiating virtual networks (VNs) 

• Common interface for multiple technologies and reusable 

• Evaluate OpenFlow to provide Virtual Network Provisioning 

libnetvirt

OpenFlowL2VPN MPLS

Management 

Application

XML File

Virtual Network 

description

Generic Interface

Drivers

pyOCNIshell

Other drivers

• OpenFlow network with OpenVSwitch 1.4 

• MPLS network with comercial network stack 

• Hosts in different VLANs 

• 2 management application: 

• Command Line Interface (CLI) 

• pyOCNI (from Institute Telecom) 

 

1. Create 2 FNS (Green and Brown) 

• Creation of 2 OF network 

• Creation of a MPLS network 

2. Add endpoint to a FNS 

3. Remove endpoint from a FNS 

4. Remove FNS 

 Virtual Network description 

<?xml version="1.0" encoding="UTF-8"?> 

<description xmlns="http://www.sail-project.eu/fns"> 

   <fns name=“demo" uuid="1"> 

      <endpoint uuid="21" > 

         <swId>2</swId> 

         <port>2</port> 

         <vlan>10</vlan> 

      </endpoint> 

      <endpoint uuid="41"> 

         <swId>4</swId> 

         <port>1</port> 

         <vlan>20</vlan> 

      </endpoint> 

      <forwarding>L2</forwarding> 

   </fns> 

</description> 

 What is libNetVirt? 

• C library with Python wrappers 

to operate Virtual Networks 

• Single router abstraction 

• Configuration in XML description 

• Definition of endpoints 

• Reusable and modular 

Try it! It’s open source! 

https://github.com/danieltt/libnetvirt 
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Cloud Network Elasticity 
for VOD Services 

ELASTICITY MODELING 
VXDL™, the Cloud modeling language, is 
extended with elasticity specification (goals, 
events, actions). The combination of events and 
actions represent the management goals for a 
given application. Events are used for 
identifying situations related with application's 
objectives (performance, cost-benefit execution, 
quality of experience). Actions are planned for 

reacting to an event. The combination of 
events and actions represents the 
management goals for a given application. 
Events are used for identifying situations 
related with application's objectives 
(performance, cost-benefit execution, 
quality of experience). Actions are planned 
for reacting to an event.  

EVENT DETECTION 
Elasticity monitoring and alert management. 
Elasticity monitoring gives real-time information 
about the behavior of a virtual infrastructure’s 
network hosting an application. Events are 
identified during the runtime enabling the 
automatic management (scaling up/down and 
resources reconfiguration/adaptation). 

USE CASE 
Service performance assurance for a video on 
demand service delivered in multi-locations.  

ELASTICITY 
ORCHESTRATION 
CloudWeaver™ helps operators specify, provision 
and operate the Elastic Cloud Network for an 
assured video on demand service. 
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Motivation – recent data suggest that ~40% of 
inter-data centre traffic is background [1]. This 
type of traffic is usually transmitted in a store-
and-forward manner making redundant hops to 
congested network edges. 
 
 

Bulk Data Transfers Using 
In-Network Data Centres 

Luis M. Vaquero, Suksant Sae Lor, Paul Murray, Dev Audsin, Nick Wainwright 
Cloud and Security Lab, Hewlett-Packard Labs 

In-Network Data Centre (In-NetDC) –  placing 
data centres in the core network enables dynamic 
deployment of in-network services and reduces 
the hops required to transfer files between data 
centres. 

Implementation – an inferred topology of 
Exodus [2] was used for emulation. We used a 
realistic graph reduction method [3] to sample 
the network. In order to support the VM’s 
deployment, we implemented an OCCI as a 
RESTful control interface. The CORE emulator 
[4] was used for network emulation and 
Advanced Message Queuing Protocol (AMQP) 
was used to aid inter In-NetDC nodes 
communication (e.g. acknowledgement of file 
chunk). 

Results – In-NetDC performs better than Random Store-and-Forward (SnF), End-to-End (E2E) and 
BitTorrent (BT). It completes bulk file transfers timely in almost all scenarios, which is not achievable 
through other approaches. 

[1] Y. Chen et al., “A first look at inter-data center traffic characteristics via Yahoo! datasets.” IEEE INFOCOM’11. 
[2] N. Spring et al., “Measuring ISP topologies with Rocketfuel.” IEEE/ACM Transactions on Networking. 
[3] L. Vaquero et al., “Sampling ISP Backbone Topologies.” IEEE Communications Letters. 
[4] J. Ahrenholz et al., “A real-time network emulator.” IEEE MILCOM’08. 
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Distributed Infrastructure Layer 

CloNe Admin Perspective 
 

Monitoring Portal 

João Soares 
joao-m-soares@ptinovacao.pt 

Portugal Telecom Inovação 

OCCI OCCI OCNI 

End-User 
Perspective 

Administrative 
Perspective 

Information 
 

• High level Map of Domains 

• Detailed Network Information 

• Data Center Information 

• Virtual Infrastructure Information 

• Client Information 

Objective 
 

To provide an organized and user-friendly view 

of distributed CloNe information available for 

brokers. 

By gathering information from all involved 

domains without neglecting possible SLA 

restrictions. 

Administrative 
domains 

DC
(HP)

DC
(IT)

Operator Network 
MPLS (PTIN)

DC
(EAB)DC 

(PT2)

Operator Network 
MPLS (EAB)

Openflow 
Network 

(IT)

DC 
(PT1)
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Load-Adaptive Elastic NetInf Deployment
Fusing CloNe and NetInf

Introduction

The demonstration shows an elastic reconfiguration
of NetInf’s Virtual Infrastructure. A new cache will be
deployed near users which are requesting content.
CloNe’s Application Deployment Toolkit (ADT) man-
ages and controls the NetInf reconfiguration.
Target Scenario Wide area deployment of NetInf

without the need of exchanging, expensive hard-
ware. Use case of In-Network cloud resources

Load-Adaptive NetInf is tracking the current, node-
local load situation (OPI)

Elastic New NetInf nodes are integrated into and
phased out of the overall NetInf system while NetInf
is working.

Flash Network Slice NetInf’s internal communica-
tion, e.g., caching, uses allocated network re-
sources between our testbed data centres.

The Fusion

•ADT Framework plugin: A customized NetInf Deci-
sion Module (DM) (NetInf logic in CloNe)
•Online Performance Indicators (OPIs): Usage Re-

ports of NetInf nodes are reported to DM
•Topology: ADT’s Topology Discovery Module
•Decision Algorithm: Multi Commodity Flow Problem

or Coverage Facility Location Problem
•ADT applies results and reconfigures Infrastructure

and NetInf (Elasticity)
•Steering Daemon support NetInf to react on infras-

tructure events (CloNe events for NetInf)
• (⇒ Poster: Application Deployment Toolkit)

Visualizations

Application Deploy-
ment Toolkit

Online Performance Indicators: 
Per NRS node: incoming requesting rate

SAIL Testbed Site
with running
NetInf VM

Traffic Generators

(⇒ Box: Architecture)

User Quality of Service: 
Measured Latency

Remote Site
Traffic Generator

Scenario Storyline

1.) Alice shares a video
over NetInf; it becomes
popular...

2.) ... and more pop-
ular: users download-
ing the content from a
neighbouring network
(a) A lot of inter-provider

traffic is caused
(b) NetInf’s quality of

service is reduced

3.) A new cache is
deployed close to users
– decided by customize
Decision Module for
NetInf (⇒ Box: The
Fusion)

Demo Architecture

Three systems realize the demonstration:
•Blue: CloNe’s ADT bridging to NetInf
•Red: NetInf deployed in a Virtual Infrastructure
•Yellow: The Traffic Generators emulate accessing users and test load-adaption

O
PI

Traffic Generator Traffic Generator Traffic Generator

Traffic Visualization

App. Depl.
Toolkit
Visualization

Steering
Daemon

Steering

Application

Distributed
Infrastructure
Service

Application Deployment
Toolkit

Logic

University of Paderborn
Computer Networks Group
Prof. Dr. Holger Karl
http://www.upb.de/cs/cn/

Contact:
Matthias Keller
+49 5251 60-1754
mkeller@upb.de
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Application Deployment Toolkit
Matthias Keller, Manuel Peuster, Christoph Robbert

Introduction

Scenario: In the near future: Many cloud infrastructure
locations unveil a quality of service for large-scaled
application not possible with today’s deployment ap-
proaches.

Problem: How to manage such an large scaled, geo-
graphically distributed deployment?
How to control the resource adaption to improve ser-
vice quality while minimizing costs?

Solution: The application deployment toolkit (ADT)...
... manages infrastructure changes and support ap-

plication with notifications (Elasticity).
... controls and reconfigures the deployment – the

Decision Module is used.
... is a framework for customized application needs

(⇒ Box: Generic Framework)
... combines processing of infrastructure and applica-

tion layer information (⇒ Item: Layer)
Layers: The right figure shows ADT on the cross do-

main layer utilizing the Infrastructure Provider. The
red application entities are shown (a) above as com-
ponents and (b) below as resources.

Layer Overview

Resource
View

IaaS IaaS IaaS

Single-domain
Infrastructure
Layer

Application Deployment
Toolkit

Cross-domain
Infrastructure
Layer

Application
Layer

With ADT we enrich CloNe’s capabilities by moving the application layer closer to
CloNe layers.

WPD Architecture

Infrastructure 
Service

Compute Storage Network

Infrastructure 
Service

Compute Storage Network

Infrastructure 
Service

Compute Storage Network

Distributed
Infrastructure
Service

Application Deployment
Toolkit

Logic

Application
Layer

Decision Module
Configuration

Application
Template

Application

Steering
Daemon

Steering

O
PI

Figure: At the bottom of the architecture VMs are connected with a FNS.
Deployment: Application provider need to provide:

(a) An annotated graph of the application architecture – the Application Template
(b) A Configuration of the used algorithm (parameters, thresholds, etc.)
(c) VM images have a Steering Daemon preinstalled. This bridge between Ap-

plication and Infrastructure enables elastic and adaptive deployment.
ADT: (a) realizes a more holistic management of a complex distributed applications

(b) enables plugged-in Decision Modules (DM) (⇒ Generic Framework)

Generic Framework

Generic: The framework supports ...
... plugin of customized Decision Modules (DMs)
... placeholder to communicate custom data

Customize: DM serves as a frame to plugin a wide
range of algorithms and optimizations.
•The figure below shows the input data and output

actions of a DM.
•ADT provides some interfaces, e.g., obtain topol-

ogy informations, current application deployment,
available Cloud sites, and Network services.

Placeholder: As the Decision Logic can be cus-
tomized, it has to process custom input (OPI) and
compute custom output.

A
D

T

IaaS

Infrastructure

VM

Steering
Daemon

Decision 
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Configuration

O
P
I

Template

University of Paderborn
Computer Networks Group
Prof. Dr. Holger Karl
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List of Acronyms

API Application Programming Interface

CloNe Cloud Networking

DCP Distributed Control Plane

FNS Flash Network Slice

GRMP Generic Resource Management Protocol

GUI Graphical User Interface

LNP Link Negotiation Protocol

MPLS Multi-Protocol Label Switching

NetInf Network of Information

OCCI Open Cloud Compute Interface

OCNI Open Cloud Network Interface

QoS Quality of Service

SLA Service Level Agreement

SLL Service Provider Logical Link

TLL Tenant Logical Link

VM Virtual Machine

VoD Video on Demand

VXDL Virtual eXecution Description Language

VPN Virtual Private Network

WAN Wide Area Network

XML eXentisible Markup Language
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