
Objective FP7-ICT-2009-5-257448/D-5.5

Future Networks

Project 257448

“SAIL – Scalable and Adaptable Internet Solutions”

D-5.5
(D.D.4) Integrated Prototype System for

Selected Use Cases

Date of preparation: 2013-02-28 Revision: 1.0
Start date of Project: 2010-08-01 Duration: 2013-02-28
Project Coordinator: Thomas Edwall

Ericsson AB

Document: FP7-ICT-2009-5-257448-SAIL/D-5.5
Date: 2013-02-28 Security: Public
Status: Final Version: 1.0

Document Properties

Document Number: D-5.5

Document Title:

(D.D.4) Integrated Prototype System for Selected Use Cases

Document Responsible: Azimeh Se�dcon (EAB)

Document Editor: Fetahi Wuhib(EAB)

Authors:

João Monteiro Soares (PTIN), Matthias Keller (UPB),
Vinay Yadhav (EAB), Rolf Stadler (KTH),
Daniel Turull (KTH), Paul Périé (Lyatiss),
Suksant Sae Lor (HP)

Target Dissemination Level: PU

Status of the Document: Final

Version: 1.0

Production Properties:

Reviewers: Benoit Tremblay (EAB)

Document History:

Revision Date Issued by Description

1.0 2013-02-28 Fetahi Wuhib First Complete Ver-
sion

Disclaimer:

This document has been produced in the context of the SAIL Project. The research leading to these results has
received funding from the European Community's Seventh Framework Programme (FP7/2010�2013) under grant
agreement n◦ 257448.
All information in this document is provided �as is� and no guarantee or warranty is given that the information
is �t for any particular purpose. The user thereof uses the information at its sole risk and liability.
For the avoidance of all doubts, the European Commission has no liability in respect of this document, which is
merely representing the authors view.

SAIL Public i

Document: FP7-ICT-2009-5-257448-SAIL/D-5.5
Date: 2013-02-28 Security: Public
Status: Final Version: 1.0

Abstract:

This deliverable summarizes the various prototypes that were developed in WPD and demon-
strated at two public events.

Keywords:

Cloud Networking, CloNe, Cloud Computing, Internet, SAIL, Prototypes, Evaluation

SAIL Public ii

Document: FP7-ICT-2009-5-257448-SAIL/D-5.5
Date: 2013-02-28 Security: Public
Status: Final Version: 1.0

Executive Summary

Prototyping and experimentation are key to bringing research ideas to the market. With this in
mind, a considerable amount of e�ort has been expended WP-D to realizing, via prototypes, the
various concepts developed in the work package. The e�ort has resulted in seven prototypes whereby
�ve where shown at the FuNeMS 2012 event and two at the �nal public event organized by SAIL.
Selected components of the prototypes have also been made available to the public via open source.

SAIL Public iii

Document: FP7-ICT-2009-5-257448-SAIL/D-5.5
Date: 2013-02-28 Security: Public
Status: Final Version: 1.0

Contents

Executive Summary iii

1 Introduction 1

2 Summary of Prototyped Demonstrators 2
2.1 Dynamic Enterprise on the CloNe Integrated Testbed 2
2.2 Dynamic Resource Management . 2
2.3 libNetvirt: a Network Virtualization Library . 4
2.4 Model-driven Resource Allocation for Elastic Video 5
2.5 In-Network Datacenter for Bulk Data Transfer . 6
2.6 An Administrative Portal for a Distributed Cloud . 6
2.7 Elastic NetInf on the CloNe Testbed . 8

3 Conclusion 9

Appendix: Posters for Demonstrated Prototypes 10

List of Acronyms 27

Bibliography 28

SAIL Public 1

Document: FP7-ICT-2009-5-257448-SAIL/D-5.5
Date: 2013-02-28 Security: Public
Status: Final Version: 1.0

1 Introduction

Prototyping and experimentation are key to bring research ideas to the market. The purpose of
prototyping is to build an early model for evaluating the new concepts or enhancing the precision of
details. The result of prototyping can serve as a base for speci�cation of a real system to be built. In
SAIL WP-D, a considerable amount of e�ort has been expended in prototyping the various concepts
developed in the work package. Most of the prototypes have been developed around a large-scale
testbed that spanned four countries.
These prototypes have been demonstrated at two public events. The �rst batch of demonstrations

were done at the `Future Network & Moble Summit' (FuNeMS 2012) in Berlin Germany, from
4-6 July 2012 [1]. During this event, a Cloud Networking (CloNe) integrated testbed showing
dynamic creation of Flash Network Slice (FNS)s spanning several countries (Section 2.1), a resource
management system supporting dynamic resource allocation (Section 2.2), a virtualization library
for networks (Section 2.3), model-driven resource provisioning for elastic video (Section 2.4) and an
e�cient technique for transferring bulk-data (Section 2.5) where shown.
The second batch of demonstrations were done at the `Future Media Distribution using Informa-

tion Centric Networks' event in Stockholm Sweden, on February 13, 2013 [2]. During this event,
two more prototypes were demonstrated: an elastic deployment of Network of Information (NetInf)
on the CloNe testbed using an adaptive deployment toolkit (Section 2.7) and a portal for the CloNe
infrastructure showing the administrator's view of the distributed cloud (Section 2.6).
The purpose of this document is to summarize the various prototypes by (1) providing a de-

scription and a short overview of the results and (2) including the posters displayed during the
events.

SAIL Public 1

Document: FP7-ICT-2009-5-257448-SAIL/D-5.5
Date: 2013-02-28 Security: Public
Status: Final Version: 1.0

2 Summary of Prototyped Demonstrators

This section provides a summary of the demonstrated prototypes. Further details of the prototypes
are also available in the referred publications as well as the posters of the demonstrations that are
also included in the appendix of this deliverable.

2.1 Dynamic Enterprise on the CloNe Integrated Testbed

The CloNe work package set about to provide integrated on-demand allocation of computing, storage
and networking across data centres and operator networks in a seamless way. More speci�cally, the
prototyping activity has focused on the integration of wide area network services with infrastructure
as a service providing customers with the ability to create distributed infrastructures at once. The
objective behind the CloNe integarted testbed was to demonstrate the feasibility of this concept.
The implemented testbed consists of four data centers: one in the UK(based on OpenStack), one in
Sweden(also based on OpenStack), one in France(based on OpenNebula) and one in Portugal(also
based on OpenNebula). The data centers are interconnected by an emulated `operator network'
running an MPLS backbone, which allowed creating FNSs with Multi-Protocol Label Switching
(MPLS) Virtual Private Network (VPN)s.
On this testbed, a customer's request for virtual infrastructure is speci�ed with the Virtual

eXecution Description Language (VXDL) description language (which may optionally be done with
a Graphical User Interface (GUI)). CloudWeaver, which runs in the distributed infrastructure layer,
decomposes this request into components to be provisioned by individual data centers/operator
network domains. These requests are then forwarded to the data center domains as Open Cloud
Compute Interface (OCCI) requests and to the operator network domains as Open Cloud Network
Interface (OCNI) requests. A key protocol running in the Distributed Control Plane (DCP) of the
CloNe architecture, the Link Negotiation Protocol (LNP), provides a mechanism for data center
and operator network domains to negotiate parameters such as peering protocols, link bandwidth
and encapsulation protocols, in order to provision the FNS. Figure 2.1b summarizes the various
components and their interactions. Details of this testbed have been document in SAIL deliverable
D.D.2 [3].
The functionalities implemented in the CloNe integrated testbed were demonstrated by a `dynamic

enterprise' use case scenario whereby a retailer of electronic appliances (the customer) wants to
o�er its products through a web shop (see Figure 2.1a). The web shop is to be integrated with the
database used for its traditional shops. That database runs on the enterprise's own IT infrastructure
in Sweden. The web front ends are to be provided from cloud data centers located in the targeted
markets, in this case UK, Portugal and France.
The prototype shows the feasibility of creating FNSs that span multiple administrative domains

in a non-disruptive manner by building upon existing cloud and networking technologies.

2.2 Dynamic Resource Management

The service model for an Infrastructure-as-a-Service cloud includes the cloud service provider op-
erating the physical infrastructure and the customer running its applications on the provisioned
virtual infrastructure. Customers specify how their applications should be run through Service

SAIL Public 2

Document: FP7-ICT-2009-5-257448-SAIL/D-5.5
Date: 2013-02-28 Security: Public
Status: Final Version: 1.0

(a) The use-case scenario and testbed (b) Key components and their interaction

Figure 2.1: The integrated CloNe testbed

Level Agreement (SLA)s while the provider speci�es how its physical resources should be allocated
through a management objective. Examples of management objective include balanced load across
servers and minimal energy consumption by the infrastructure. A key task of resource management
is to allocate resources of the physical infrastructure such that the SLAs as well as the management
objective are achieved.
The CloNe management architecture [4] realizes resource management functionality through two

management functions: a `resource allocation' function that determines how resources are allocated
to new requests for virtual infrastructure and a `resource optimization' function that adapts an
existing allocation of resources such that customer SLAs as well as the management objective are
achieved at all times. The CloNe prototype includes generic realizations of these functions in the
OpenStack cloud platform [5] and their instantiations for selected management objectives.
The implemented resource allocation function extends the OpenStack least-cost scheduler. The

extensions include a set of �lters and cost functions that instantiate the scheduler for balanced-load
and minimized energy consumption objectives. The implemented resource optimization function is
realized by a generic gossip-based protocol called Generic Resource Management Protocol (GRMP).
Theoretical and simulation studies of the protocol have shown that GRMP can scale to well beyond
100,000 servers [6]. The prototype includes instantiations of the GRMP protocol that realize the
two management objectives above.
The feasibility as well as the performance of the resource management system was evaluated on a

testbed consisting of 9 servers running an average of 80 Virtual Machine (VM)s at any time. A load
generator generates requests to start and stop VMs at di�erent rates. We measured how well the
management objectives are achieved and the cost of achieving those objectives. Figure 2.2 shows
the results for the balanced load objective. The �gure on left shows how well the load is balanced
for di�erent VM churn rates and when dynamic adaptation is disabled. The �gure on right shows
the associated cost. The �gure shows that the load across the servers is well-balanced when there
is little or no churn of VMs while the e�ectiveness degrades for high churn settings. In conjunction
with the cost �gure, this implies that optimization through dynamic adaptation is cost-e�ective
only up to a certain rate of addition/removal of VMs in the system. The details of the evaluation

SAIL Public 3

Document: FP7-ICT-2009-5-257448-SAIL/D-5.5
Date: 2013-02-28 Security: Public
Status: Final Version: 1.0

result are available in [7].

(a) E�ectiveness of resource allocation (normalized to
avg. utilization)

(b) Cost of dynamic adaptation

Figure 2.2: E�ectiveness and e�ciency of dynamic resource allocation for balanced-load objective

2.3 libNetvirt: a Network Virtualization Library

libNetVirt: it is an Application Programming Interface (API) that creates a network abstraction
layer to allow for the management of di�erent network technologies in a programmable way. Cur-
rently, libNetVirt can control both OpenFlow and MPLS based networks. It uses single router
abstraction to describe a network. The description includes the endpoints of the network, the
constraints of speci�c paths as well as type of forwarding required for the underlying network.
libNetVirt is composed of a common interface and a set of drivers (See Figure 2.3). Each driver im-
plements the required con�guration for a speci�c underlying technology. Both an OpenFlow driver
and a L3 VPN driver are implemented as a proof of concept of this solution. libNetVirt o�ers two
APIs in C and Python to operate the network. libNetVirt can be used in di�erent ways:

1. Integrated with the network manager of a data center managed with OpenFlow. It allows the
creation of di�erent virtual networks between endpoints.

2. Directly integrated inside the network resource management system of the Network Operator
to set up a MPLS network. When the network domain receives the request it calls libNetVirt
with the python API.

3. libNetVirt has been integrated with pyOCNI and a specialized OCNI mixin for OpenFlow has
been de�ned and implemented.

4. Set up the network automatically from a saved network description. libNetVirt uses an
eXentisible Markup Language (XML) format to describe the network.

OpenFlow in libNetVirt permits a �exible and fast way to verify that a particular resource belongs
to a speci�c FNS and to establish end to end path between two resources in a single domain.
If multiple domains are present, OpenFlow can also be used to interconnect them. The use of
OpenFlow in some parts of the SAIL test bed provided us with the following experiences:

• The use of a global view permits the use logically centralized algorithms to enforce isolation
in the network.

SAIL Public 4

Document: FP7-ICT-2009-5-257448-SAIL/D-5.5
Date: 2013-02-28 Security: Public
Status: Final Version: 1.0

WAN network. MPLS

L3
R3

R4

L5

R6

R5

L4

3

4

52
3

4

5

6

2

3

4

2

3

4

GRE tunnel
L2 PE 1

PE 4

R7 R8

Figure 2.3: The architecture of libNetVirt (left) and the testbed it was evaluated on (right)

• Using OpenFlow for fault management permits quick reaction if a disruption in the network
is created. The global view permits receiving noti�cations when a network element is down
and reroute the a�ected tra�c to another path.

• However, if the use of OpenFlow is reactive (the path is computed and installed when a �ow
arrives), a small delay is introduced in the �rst packet of the �ow.

• OpenFlow controller can be tested in a simulated environment that approximates very well a
real network environment. This permits the experimentation with the network for unexpected
events without a�ecting the production network.

The prototype is shows the feasibly of managing di�erent types of networks via the same API, in
a similar manner to the popular libvirt API for platform virtualization.

2.4 Model-driven Resource Allocation for Elastic Video

Many applications deployed within clouds have dynamic needs in term of resources. Buzz e�ects,
�ash crowds and other types of gossip events may explain the volatility of their workload. Cloud
operators may face tough challenges in conveying the proper level of QoS to their hosted applications
when these applications exhibit dynamic workload pro�les. They may then have crucial needs for
e�cient schemes to dynamically and rapidly allocate/release resources when an application needs
it. Capturing these needs and translating them into action are real challenges for a Cloud Network
controller.
In this demo, we demonstrate the VXDL language and CloudWeaver extensions to adequately

model and enforce high elasticity within a cloud network so as to cope with the need of a hosted,
very dynamic application. The purpose of this demo is twofold. First, we use our theoretical model
[8, 9] to reproduce the workload dynamics of an-demand service that may be subject to buzz e�ects
and �ash-crowds types of events. This model exhibits buzz-free period (normal behavior) and buzz
period (abnormal behavior) where the instantaneous workload of the e-service surges very sharply.
Second, using this model as the workload generator, we use the VXDL language and CloudWeaver
(Cloud Network Controller) extensions to dynamically adjust the level of provisioned resource that
permits to adequately host the application. A new feature in this process stems from the use of large
deviation principle that assists the decision making process for allocating or releasing resources.
The Use Case is centred on a Video on Demand (VoD) service. A server broadcasts video to a

huge number of potential watchers. As the number of watchers varies, so does the workload on the
VoD service (we assume no multicast transfer here).

SAIL Public 5

Document: FP7-ICT-2009-5-257448-SAIL/D-5.5
Date: 2013-02-28 Security: Public
Status: Final Version: 1.0

This demo is deployed on the Grid'5000 platform. Agents acting as the VoD server or as potential
viewers are deployed on geographically distant nodes. The popularity of a video is directly linked
to the number of agents who have �seen� it in the past. On top of this, buzz (�ash crowd) caused
by an external event may occur and cause a sudden surge in the popularity of a video. In the demo,
we are able to directly trigger buzz. Overall, the subsequent workload exhibit large and sometimes
steep variations in its behavior.
At the VoD server, we collect measurements data and we use this information to better adjust

the level of resource dedicated to this application. Of course, we consider a QoS objective but we
also try to minimize the number of recon�gurations/reallocations in relation to CAPEX/OPEX.
Our allocation scheme is mainly based on the large deviation properties. We rely on the virtual
description language to dynamically provision and release resources to match the current need.
This prototype shows that our approach of model-driven resource allocation is e�ective in handling

high-variability resource demands that are characteristic of video distribution systems.

2.5 In-Network Datacenter for Bulk Data Transfer

Emerging applications demand more e�cient ways to handle the large amount of tra�c they generate
and send across sites. The current architecture solves the performance issue by caching the content
at nodes on network edges. However, this is not suitable for dynamic behaviour of many services
such as video streaming and bulk �le transfers. Often data compression and load balancing are
used to alleviate the situation. We attempted to explore an alternative way for caching data more
e�ciently; in particular, ones that are bulk in nature as it will signi�cantly improve the network
utilisation.
We proposed In-Network data center (In-NetDC) [10], which follows NetStitcher's store-and-

forward principles [11] enabling content caching at intermediate nodes between the source and the
destination where the actual consumption takes place. Note that, a simple solution such as end-
to-end transfers is not possible due to typical rate-limiting policies enforced by network operators.
In-NetDC di�ers from previous solutions as the caching nodes connect directly to the core network
via high capacity links avoiding hops to the network edges where congestion level is higher than the
core in typical scenarios.
To illustrate the performance of In-NetDC, a realistic topology that preserves the statistical

properties of the tra�c with regards to average delay, throughput and geographical constraints of a
real network was used. We simulated the tra�c using a simple non-stationary process with adhoc
Gaussian as background tra�c. The experiment was performed based on a network emulator in
comparison with traditional end-to-end (E2E) transfer, BitTorrent and random store-and-forward
mechanism. Furthermore, we performed real-world experiments using di�erent chunk sizes of �les
transferred between data centres in the US and ones in the UK to determine their e�ects on transfer
time.
From Figure 2.4, we can see that In-NetDC outperforms other existing solutions and the required

transfer time between caching nodes in core networks signi�cantly shorter than that of between edge
and core for all chunk sizes. In addition to this performance advantage, our approach also provides
on-demand deployment capabilities to create/terminate in-network resources of the required capac-
ity at the required time through our OCCI implementation. Further details of the our approach
and the evaluation results are available in [10].

2.6 An Administrative Portal for a Distributed Cloud

In order to complement the faithful vision of the CloNe service in a customer perspective, we have
worked towards providing an organized and user-friendly view of distributed CloNe information

SAIL Public 6

Document: FP7-ICT-2009-5-257448-SAIL/D-5.5
Date: 2013-02-28 Security: Public
Status: Final Version: 1.0

 0

 2000

 4000

 6000

-3 -2 -1 0 1 2 5 8

Tr
an

sf
er

 ti
m

e
(m

in
ut

es
)

Time difference (hours)

E2E
Random SnF

BT
In-NetDC

(a) Transfer time in function of time di�erence (b) Transfer times for In-Net DC

Figure 2.4: Performance of In-Net DC vs. other technologies

available in the system in an administrative perspective.
This perspective is re�ected in a monitoring portal that provides a high level map of the domains

that are part of the CloNe testbed and how these domains relate to each other. Moreover, important
Wide Area Network (WAN) and data center information is provided along with virtual infrastructure
and customer information:

• On the WAN side it is possible to see the type of services that each network operator can o�er
(L2 or L3), the amount of resources that can be used within that domain (e.g. number of FNSs
per end-point, Service Provider Logical Link (SLL)s' available capacity), the FNSs that are
deployed within that domain, etc. Depending on the SLA the portal agent has with the various
administrative domains, the information available regarding a given domain can be much more
detailed and could include, the status of provider edge equipments and inter-domain related
information with respect to the LNP such as IP addresses used in the inter-domain Tenant
Logical Link (TLL)s. (In the prototype, detailed information was available for the PTIN
network domain.)

• On the data center side it is possible to see the amount of resources that can be used by the
CloNe system, status of SLLs and the resources allocated within each data center.

• Virtual Infrastructure: it is possible to see the entire virtual infrastructure as well as where
each individual part of it is allocated, i.e. in which domain.

• Customer: see the customer name, pro�le (in terms of Quality of Service (QoS) and Security)
as well as which virtual infrastructure it has running on the CloNe system.

This prototype allowed us to assess the type and level of information required for a CloNe system
broker to have with respect to the individual administrative domain, the virtual infrastructure, and
the customer itself.
Moreover, it allowed us to understand how this information could be organized, made visible and

understandable to a possible CloNe system administrator. In the end, it also became a framework
that allows the demonstration of the concept, even from an administrative perspective.

SAIL Public 7

Document: FP7-ICT-2009-5-257448-SAIL/D-5.5
Date: 2013-02-28 Security: Public
Status: Final Version: 1.0

2.7 Elastic NetInf on the CloNe Testbed

Virtualizing NetInf allows allocating resources where NetInf bene�ts most. In our demonstration,
we showed a dynamic adaptation of NetInf's resources. In a typical use case, content with rising
popularity results in (a) higher usage intensity at (b) di�erent requester's locations. Today's NetInf
replaces less popular content in caches by more popular content. This reduces the quality of access
for such dropped content. In such a situation, increasing the cache capacity is desirable. We leverage
the potential of cloud infrastructure's on-demand provisioning feature to swiftly provide NetInf with
new resources at appropriate locations. This enables NetInf to handle content with rising popularity
without reducing the access quality of the other content.
Remarkable points of the demonstration:

• Live presentation of interactively controlled load generators, of load measurements, of thresh-
old decisions, of and virtual machine (VM) deployment.

• VMs are deployed on all testbed locations from all partners (EAB, HP, PTIN, IT). Load
generators are operated from geographically di�erent locations (UPB, KTH).

• Customized visualizations for the demonstration showing (1) The topological relationships
and NetInf's virtual infrastructure and (2) Live plots for performance indicators and measured
end-user's quality of service

Virtualized NetInf on top of CloNe realizes a deployment without the need of high upfront in-
vestments for exchanging hardware. Having cloud resource available today, our work enables a
distributed deployment of NetInf in a very near future. This will shorten the time to evaluate
NetInf in a worldwide deployment, which eases future migration steps. In addition CloNe o�ers
network connectivity service and load-adaptive deployment. While the �rst enables NetInf to have
guarantees for management communication, the latter one allocates that amount of resources at
geographically distributed sites, which optimizes NetInf's performance.
CloNe's Application Deployment Toolkit (ADT) has two new facades: At �rst, its architecture

can be customized to a wide range of application and even to NetInf [12]. Its steering concept intro-
duces a new exchange of communication between infrastructure and application level. This enables
optimization potential not utilized today. At second, the prototype shows a working, practical eval-
uation of the architecture across multiple layers: NetInf is running on NetInf's virtual infrastructure
managed by ADT and deployed on the CloNe testbed. Both the architecture and the prototype lay
the foundation of future research in topologically optimized application deployment.

SAIL Public 8

Document: FP7-ICT-2009-5-257448-SAIL/D-5.5
Date: 2013-02-28 Security: Public
Status: Final Version: 1.0

3 Conclusion

The main ambition of the prototyping activity in CloNe had been to demonstrate the capabilities
of an evolved Cloud Networking model. This model aims for a extensible architecture, which allows
the deployment of complex applications over heterogeneous networks spread over multiple domains.
The various concepts that were developed in the context of this model had been prototyped and
demonstrated publicly at two separate events. We believe that these prototypes have ful�lled their
goal of proving the feasibility of the model in general, and the various concepts in particular.
Beyond the public demonstration, various components of the demonstrated prototypes have been

contributed to open source. This includes the OCNI speci�cation which was part of the CloNe
integrated testbed [13], the scheduler component of the dynamic resource management extension to
OpenStack [14] and the libNetVirt implementation [15].

SAIL Public 9

Document: FP7-ICT-2009-5-257448-SAIL/D-5.5
Date: 2013-02-28 Security: Public
Status: Final Version: 1.0

Appendix: Posters for Demonstrated

Prototypes

Dynamic Enterprise on the CloNe Integrated Testbed

SAIL Public 10

RESEARCH POSTER PRESENTATION DESIGN © 2011

www.PosterPresentations.com

QUICK TIPS

(--THIS SECTION DOES NOT PRINT--)
This PowerPoint template requires basic PowerPoint (version

2007 or newer) skills. Below is a list of commonly asked

questions specific to this template.

If you are using an older version of PowerPoint some template

features may not work properly.

Using the template

Verifying the quality of your graphics

Go to the VIEW menu and click on ZOOM to set your preferred

magnification. This template is at 50% the size of the final

poster. All text and graphics will be printed at 200% their size.

To see what your poster will look like when printed, set the

zoom to 200% and evaluate the quality of all your graphics and

photos before you submit your poster for printing.

Using the placeholders

To add text to this template click inside a placeholder and type

in or paste your text. To move a placeholder, click on it once

(to select it), place your cursor on its frame and your cursor

will change to this symbol: Then, click once and drag it to

its new location where you can resize it as needed. Additional

placeholders can be found on the left side of this template.

Modifying the layout

This template has four different

column layouts. Right-click your

mouse on the background and

click on “Layout” to see the layout

options. The columns in the provided layouts are fixed and

cannot be moved but advanced users can modify any layout by

going to VIEW and then SLIDE MASTER.

Importing text and graphics from external sources

TEXT: Paste or type your text into a pre-existing placeholder or

drag in a new placeholder from the left side of the template.

Move it anywhere as needed.

PHOTOS: Drag in a picture placeholder, size it first, click in it

and insert a photo from the menu.

TABLES: You can copy and paste a table from an external

document onto this poster template. To adjust the way the

text fits within the cells of a table that has been pasted, right-

click on the table, click FORMAT SHAPE then click on TEXT BOX

and change the INTERNAL MARGIN values to 0.25

Modifying the color scheme

To change the color scheme of this template go to the “Design”

menu and click on “Colors”. You can choose from the provide

color combinations or you can create your own.

QUICK DESIGN GUIDE

(--THIS SECTION DOES NOT PRINT--)

This PowerPoint 2007 template produces a 42”x72”

professional poster. It will save you valuable time placing

titles, subtitles, text, and graphics.

Use it to create your presentation. Then send it to

PosterPresentations.com for premium quality, same day

affordable printing.

We provide a series of online tutorials that will guide you

through the poster design process and answer your poster

production questions.

View our online tutorials at:

 http://bit.ly/Poster_creation_help

(copy and paste the link into your web browser).

For assistance and to order your printed poster call

PosterPresentations.com at 1.866.649.3004

Object Placeholders

Use the placeholders provided below to add new elements to

your poster: Drag a placeholder onto the poster area, size it,

and click it to edit.

Section Header placeholder

Move this preformatted section header placeholder to the

poster area to add another section header. Use section headers

to separate topics or concepts within your presentation.

Text placeholder

Move this preformatted text placeholder to the poster to add a

new body of text.

Picture placeholder

Move this graphic placeholder onto your poster, size it first,

and then click it to add a picture to the poster.

 © 2011 PosterPresentations.com
 2117 Fourth Street , Unit C

 Berkeley CA 94710

 posterpresenter@gmail.com
Student discounts are available on our Facebook page.

Go to PosterPresentations.com and click on the FB icon.

WpD : Interdomain Flash Network Slice Creation

DEFINE

DEPLOY

Inter-domain Interfaces:
OCNI, OCCI, DCP

Description Language:
VXDL

Interface Technology:
HTTP Rest, MQ

SUMMARY

INTERFACES

TEST BED

DEMONSTRATOR

Hareesh Puthalath, Bob Melander, Vinay Yadhav, Enrique Fernández, Kalle Persson1, João Soares, Márcio Melo2,
Houssem Medhioub, Marouen Mechtri3, Dev Audsin, Luis M. Vaquero4, Paul Perie5

Ericsson1, PT Inovação2, Institut Telecom3, Hewlett-Packard4, Lyatiss5

ACCESS

TECHNOLOGY HIGHLIGHTS

Cloud Fabric Controller:
Openstack, OpenNebula

VPN & Network Technology:
L3 MPLS, IPSec, GRE, OpenVSwitch

Network Virtualization:
Diverter, OpenFlow, VLAN

Starting an European-spanning Webshop Service in Minutes using

Distributed Clouds and Flash Network Slices.

Webshop System Spec + Service Constraints/Goals  Goal Translation &

Constraint Resolution  Virtual Infrastructure Description  Virtual Resource

Request using OCCI/OCNI to Networks & Clouds  Distributed Control Plane to

negotiate FNS protocols, properties & Instantiation  Webshop service deployed!

Graphical specification in VXDL language

Decomposition of the Virtual Infrastructure

Deployed Webshop

Real protocols, real implementation

No emulation or simulation

User interaction model

Interdomain Flash Network Slice Creation

SAIL Cloud Networking (CloNe)

SCENARIO

Deploying a European-spanning Webshop Service in
minutes using distributed clouds and Flash Network Slices.

INTERFACES

Inter-domain
Interfaces:
OCNI, OCCI, DCP

Description Language:
VXDL

Interface Technology:
HTTP Rest, MQ

TECHNOLOGY HIGHLIGHTS

Cloud Fabric Controller:
Openstack, OpenNebula
VPN & Network
Technology:
L3 MPLS, IPSec, GRE,
OpenVSwitch
Network Virtualization:
Diverter, OpenFlow, VLAN

ORCHESTRATOR

Decomposition of the Virtual
Infrastructure

Main project contributions

“A Flash Network Slice is an
elastic network resource with

customizable performance and
isolation properties that can be
allocated in a similar timescale
as other basic cloud resources
such as compute and storage.”

Hareesh Puthalath, Bob Melander, Vinay Yadhav, Enrique Fernández, Kalle Persson1, João Soares, Márcio Melo2,
Houssem Medhioub, Marouen Mechtri3, Dev Audsin, Luis M. Vaquero4, Paul Perie5

Ericsson1, PT Inovação2, Institut Telecom3, Hewlett-Packard4, Lyatiss5

1. User defines desired Virtual Infrastructure.
2. Goal translation and decomposition.
3. Deployment of infrastructure components.
4. Connection of the distributed infrastructure.

Technology

DEMONSTRATOR

Real protocols, real implementation
No emulation or simulation

1

2

3 3 4

TECHNOLOGY HIGHLIGHTS

WORKFLOW

www.sail-project.eu

Operator NetworkOperator Network

Link Negotiation Protocol

SAIL Cloud Networking (CloNe)

www.sail-project.eu

Message Exchange Diagram

Summary

A multi-domain protocol, with
support for multiple

technologies, for creating
virtual links belonging to a

virtual infrastructure that span
multiple domains.

The protocol is part of the
Distributed Control Plane

(DCP) of CloNe.

Use Case

Link_Offer

Link_Select

Link_Config

Domain A
ISR DCP

Domain B
ISR DCP

Select possible
hosting links

Select L3 Virtual
Link configs

Set L2 Virtual
Link configs

Config L3
Virtual Link

Link N
egotiation

Virtual Link
Request

Virtual Link
Request

L3_Offer

L3_Config

Config L2
Virtual Link

Set L3 Virtual
Link configs

Config L3
Virtual Link

Config L2
Virtual Link

Select hosting
link

L2
 N

eg
ot

ia
tio

n
L3

 N
eg

ot
ia

tio
n

Example DC-NO Setup

Hareesh Puthalath, Bob Melander1, João Soares, Márcio Melo2

Ericsson1, PT Inovação2

Highlights

Network Technologies
L3 MPLS VPN, VPLS , Openflow..
Protocols
OSPF, RIP, BGP, ...
Encapsulation schemes
VLAN,GRE, IEEE 802.1ah ...

Message example

Document: FP7-ICT-2009-5-257448-SAIL/D-5.5
Date: 2013-02-28 Security: Public
Status: Final Version: 1.0

Dynamic Resource Management

SAIL Public 14

Resource Allocation

The implemented resource allocation function extends the
OpenStack least-cost scheduler (flowchart shown below).
The extensions include a set of filters and cost functions
that instantiate the scheduler for balanced-load and
minimized energy consumption objectives.

Resource Optimization

The resource optimization function is realized by a generic
gossip-based protocol called GRMP [1,3] (pseudocode
shown below). Theoretical and simulation studies [2,3] show
that GRMP can scale to well beyond 100,000 servers. The
prototype includes instantiations of GRMP’s three abstract
methods that realize the two management objectives above.

Background

The service model for an Infrastructure-as-a-Service
cloud includes the cloud service provider operating the
physical infrastructure and the customer running its
applications on the provisioned virtual infrastructure. In this
model, customers specify how their applications should be
run through SLAs while the provider specifies how its
physical resources should be allocated through a
management objective. A key task of resource
management is to allocate resources of the physical
infrastructure such that the SLAs as well as the
management objective are achieved.

Management Objectives

The management objective of a service provider depends
on factors such as its customers, their applications, its
physical infrastructure and business strategy. Examples of
management objective include:

• balanced load across servers
• minimal energy consumption by the infrastructure
• fair allocation of resources to customers
• service differentiation among different service classes

Resource Management Functions

The CloNe management architecture realizes resource
management functionality through two management
functions: a resource allocation function that determines
how resources are allocated to new requests for virtual
infrastructure and a resource optimization function that
adapts an existing allocation of resources such that
customer SLAs as well as the management objective are
achieved at all times. The CloNe prototype includes generic
realizations of these functions in the OpenStack cloud
platform. It also includes instantiations for select
management objectives.

Dynamic Resource Management
with Management Objectives

Fetahi Wuhib1, Rolf Stadler1, Hans Lindgren1 and Hareesh Puthalath2
1KTH Royal Institute of Technology, Stockholm, Sweden; 2Ericsson Research, Stockholm, Sweden

Evaluation Results

We evaluate the performance of
the resource management system
on a testbed consisting of 9 servers
(24 cores, 64GB RAM each)
running an average of 80 VMs at
any given time. A load generator
generates requests to start and
stop VMs at different rates. For
balanced load objective, the plot on
top shows how well the load is
balanced for different VM churn
rates and when dynamic adaptation
is disabled while the plot on the
bottom shows the associated cost.
An interesting observation is that
optimization through dynamic
adaptation is cost-effective only up
to a certain churn rate.

[1] F. Wuhib, R. Stadler, H. Lindgren: “Dynamic Resource Allocation with Management
Objectives: Implementation for an OpenStack Cloud,” submitted for publication.

[2] F. Wuhib, R. Stadler, M. Spreitzer: “A Gossip Protocol for Dynamic Resource Management
in Large Cloud Environments,” IEEE Transactions on Network and Service Management
(TNSM), Vol. 9, No. 2, June 2012.

[3] R. Yanggratoke, F. Wuhib, R. Stadler: “Gossip-based Resource Allocation for Green
Computing in Large Clouds,” International Conference on Network and Service
Management (CNSM), Paris, France, October 24-28, 2011.

Document: FP7-ICT-2009-5-257448-SAIL/D-5.5
Date: 2013-02-28 Security: Public
Status: Final Version: 1.0

libNetVirt: a Network Virtualization Library

SAIL Public 16

LibNetVirt:
the Network Virtualization Library

Daniel Turull, Markus Hidell, Peter Sjödin1
1KTH

 Demo

 Architectural Design

 Objectives

• Define and develop a control framework for defining and instantiating virtual networks (VNs)

• Common interface for multiple technologies and reusable

• Evaluate OpenFlow to provide Virtual Network Provisioning

libnetvirt

OpenFlowL2VPN MPLS

Management

Application

XML File

Virtual Network

description

Generic Interface

Drivers

pyOCNIshell

Other drivers

• OpenFlow network with OpenVSwitch 1.4

• MPLS network with comercial network stack

• Hosts in different VLANs

• 2 management application:

• Command Line Interface (CLI)

• pyOCNI (from Institute Telecom)

1. Create 2 FNS (Green and Brown)

• Creation of 2 OF network

• Creation of a MPLS network

2. Add endpoint to a FNS

3. Remove endpoint from a FNS

4. Remove FNS

 Virtual Network description

<?xml version="1.0" encoding="UTF-8"?>

<description xmlns="http://www.sail-project.eu/fns">

 <fns name=“demo" uuid="1">

 <endpoint uuid="21" >

 <swId>2</swId>

 <port>2</port>

 <vlan>10</vlan>

 </endpoint>

 <endpoint uuid="41">

 <swId>4</swId>

 <port>1</port>

 <vlan>20</vlan>

 </endpoint>

 <forwarding>L2</forwarding>

 </fns>

</description>

 What is libNetVirt?

• C library with Python wrappers

to operate Virtual Networks

• Single router abstraction

• Configuration in XML description

• Definition of endpoints

• Reusable and modular

Try it! It’s open source!

https://github.com/danieltt/libnetvirt

Document: FP7-ICT-2009-5-257448-SAIL/D-5.5
Date: 2013-02-28 Security: Public
Status: Final Version: 1.0

Model-driven Resource Allocation for Elastic Video

SAIL Public 18

Cloud Network Elasticity
for VOD Services

ELASTICITY MODELING
VXDL™, the Cloud modeling language, is
extended with elasticity specification (goals,
events, actions). The combination of events and
actions represent the management goals for a
given application. Events are used for
identifying situations related with application's
objectives (performance, cost-benefit execution,
quality of experience). Actions are planned for

reacting to an event. The combination of
events and actions represents the
management goals for a given application.
Events are used for identifying situations
related with application's objectives
(performance, cost-benefit execution,
quality of experience). Actions are planned
for reacting to an event.

EVENT DETECTION
Elasticity monitoring and alert management.
Elasticity monitoring gives real-time information
about the behavior of a virtual infrastructure’s
network hosting an application. Events are
identified during the runtime enabling the
automatic management (scaling up/down and
resources reconfiguration/adaptation).

USE CASE
Service performance assurance for a video on
demand service delivered in multi-locations.

ELASTICITY
ORCHESTRATION
CloudWeaver™ helps operators specify, provision
and operate the Elastic Cloud Network for an
assured video on demand service.

threshold

Adaptation on event detection

owner
user

virtualInfrastructure

model: string
exclusivity: boolean
tags: map<string, string>

vResource

devices: list<string>
image: string
region: string

vNode
region: string

vRouter
region: string

vAccessPoint
type: string
image: string
region: string

vStorage

id
location
startDate
totalTime

common

id
location
cardinality

vArray

unit: string
value

architecture: string
cpu

min: number
max: number

interval

layer
type
routingProtocol

controlPlane

source: id
destination: id

vLink

bandwidth

0..10..1

0..1
0..1

0..1
0..1

0..1

0..*

0..1

value: number
simple

value: list<number>
set

frequency

0..1

memory

memory
size

0..1

storage

latency

forward

reverse

rule

inEndpoint: list<id>
region: string
addressNumber: number

loadBalancer

inEndpoint
inPort
protocol
region: string
outPort

nat
inEndpoint: list<id>
region: string

masquerade

* *

*

core

0..1

*

rtSize
routingTable

source: id
destination: id
vLinkIn: id
vLinkOut: id

route

0..1

*

min: number
max: number
step: number

scale

start: date
end: date
average: number
min: number
max: number

metric

timeserie

event: id
capacity

date: date
value: number

datapoint

*

0..1

0..n
0..1

usage
capacity

name: string
unit: string

namedMetric
0..* metrics

id: string
event

after: id
duration: duration

temporalEvent

*

timeline

0..1

properties: map<string, string>
capacities: map<string, string>
parameters: map<string,
string>

vNetworkElement

www.lyatiss.com

contact@lyatiss.com

Document: FP7-ICT-2009-5-257448-SAIL/D-5.5
Date: 2013-02-28 Security: Public
Status: Final Version: 1.0

In-Network Datacenter for Bulk Data Transfer

SAIL Public 20

Motivation – recent data suggest that ~40% of
inter-data centre traffic is background [1]. This
type of traffic is usually transmitted in a store-
and-forward manner making redundant hops to
congested network edges.

Bulk Data Transfers Using
In-Network Data Centres

Luis M. Vaquero, Suksant Sae Lor, Paul Murray, Dev Audsin, Nick Wainwright
Cloud and Security Lab, Hewlett-Packard Labs

In-Network Data Centre (In-NetDC) – placing
data centres in the core network enables dynamic
deployment of in-network services and reduces
the hops required to transfer files between data
centres.

Implementation – an inferred topology of
Exodus [2] was used for emulation. We used a
realistic graph reduction method [3] to sample
the network. In order to support the VM’s
deployment, we implemented an OCCI as a
RESTful control interface. The CORE emulator
[4] was used for network emulation and
Advanced Message Queuing Protocol (AMQP)
was used to aid inter In-NetDC nodes
communication (e.g. acknowledgement of file
chunk).

Results – In-NetDC performs better than Random Store-and-Forward (SnF), End-to-End (E2E) and
BitTorrent (BT). It completes bulk file transfers timely in almost all scenarios, which is not achievable
through other approaches.

[1] Y. Chen et al., “A first look at inter-data center traffic characteristics via Yahoo! datasets.” IEEE INFOCOM’11.
[2] N. Spring et al., “Measuring ISP topologies with Rocketfuel.” IEEE/ACM Transactions on Networking.
[3] L. Vaquero et al., “Sampling ISP Backbone Topologies.” IEEE Communications Letters.
[4] J. Ahrenholz et al., “A real-time network emulator.” IEEE MILCOM’08.

Document: FP7-ICT-2009-5-257448-SAIL/D-5.5
Date: 2013-02-28 Security: Public
Status: Final Version: 1.0

An Administrative Portal for a Distributed Cloud

SAIL Public 22

www.sail-project.eu

Distributed Infrastructure Layer

CloNe Admin Perspective

Monitoring Portal

João Soares
joao-m-soares@ptinovacao.pt

Portugal Telecom Inovação

OCCI OCCI OCNI

End-User
Perspective

Administrative
Perspective

Information

• High level Map of Domains

• Detailed Network Information

• Data Center Information

• Virtual Infrastructure Information

• Client Information

Objective

To provide an organized and user-friendly view

of distributed CloNe information available for

brokers.

By gathering information from all involved

domains without neglecting possible SLA

restrictions.

Administrative
domains

DC
(HP)

DC
(IT)

Operator Network
MPLS (PTIN)

DC
(EAB)DC

(PT2)

Operator Network
MPLS (EAB)

Openflow
Network

(IT)

DC
(PT1)

Document: FP7-ICT-2009-5-257448-SAIL/D-5.5
Date: 2013-02-28 Security: Public
Status: Final Version: 1.0

Elastic NetInf on the CloNe Testbed

SAIL Public 24

Load-Adaptive Elastic NetInf Deployment
Fusing CloNe and NetInf

Introduction

The demonstration shows an elastic reconfiguration
of NetInf’s Virtual Infrastructure. A new cache will be
deployed near users which are requesting content.
CloNe’s Application Deployment Toolkit (ADT) man-
ages and controls the NetInf reconfiguration.
Target Scenario Wide area deployment of NetInf

without the need of exchanging, expensive hard-
ware. Use case of In-Network cloud resources

Load-Adaptive NetInf is tracking the current, node-
local load situation (OPI)

Elastic New NetInf nodes are integrated into and
phased out of the overall NetInf system while NetInf
is working.

Flash Network Slice NetInf’s internal communica-
tion, e.g., caching, uses allocated network re-
sources between our testbed data centres.

The Fusion

•ADT Framework plugin: A customized NetInf Deci-
sion Module (DM) (NetInf logic in CloNe)
•Online Performance Indicators (OPIs): Usage Re-

ports of NetInf nodes are reported to DM
•Topology: ADT’s Topology Discovery Module
•Decision Algorithm: Multi Commodity Flow Problem

or Coverage Facility Location Problem
•ADT applies results and reconfigures Infrastructure

and NetInf (Elasticity)
•Steering Daemon support NetInf to react on infras-

tructure events (CloNe events for NetInf)
• (⇒ Poster: Application Deployment Toolkit)

Visualizations

Application Deploy-
ment Toolkit

Online Performance Indicators:
Per NRS node: incoming requesting rate

SAIL Testbed Site
with running
NetInf VM

Traffic Generators

(⇒ Box: Architecture)

User Quality of Service:
Measured Latency

Remote Site
Traffic Generator

Scenario Storyline

1.) Alice shares a video
over NetInf; it becomes
popular...

2.) ... and more pop-
ular: users download-
ing the content from a
neighbouring network
(a) A lot of inter-provider

traffic is caused
(b) NetInf’s quality of

service is reduced

3.) A new cache is
deployed close to users
– decided by customize
Decision Module for
NetInf (⇒ Box: The
Fusion)

Demo Architecture

Three systems realize the demonstration:
•Blue: CloNe’s ADT bridging to NetInf
•Red: NetInf deployed in a Virtual Infrastructure
•Yellow: The Traffic Generators emulate accessing users and test load-adaption

O
PI

Traffic Generator Traffic Generator Traffic Generator

Traffic Visualization

App. Depl.
Toolkit
Visualization

Steering
Daemon

Steering

Application

Distributed
Infrastructure
Service

Application Deployment
Toolkit

Logic

University of Paderborn
Computer Networks Group
Prof. Dr. Holger Karl
http://www.upb.de/cs/cn/

Contact:
Matthias Keller
+49 5251 60-1754
mkeller@upb.de

SAIL
Objective:
FP7-ICT-2009-5-257448
http://www.sail-project.eu/

Application Deployment Toolkit
Matthias Keller, Manuel Peuster, Christoph Robbert

Introduction

Scenario: In the near future: Many cloud infrastructure
locations unveil a quality of service for large-scaled
application not possible with today’s deployment ap-
proaches.

Problem: How to manage such an large scaled, geo-
graphically distributed deployment?
How to control the resource adaption to improve ser-
vice quality while minimizing costs?

Solution: The application deployment toolkit (ADT)...
... manages infrastructure changes and support ap-

plication with notifications (Elasticity).
... controls and reconfigures the deployment – the

Decision Module is used.
... is a framework for customized application needs

(⇒ Box: Generic Framework)
... combines processing of infrastructure and applica-

tion layer information (⇒ Item: Layer)
Layers: The right figure shows ADT on the cross do-

main layer utilizing the Infrastructure Provider. The
red application entities are shown (a) above as com-
ponents and (b) below as resources.

Layer Overview

Resource
View

IaaS IaaS IaaS

Single-domain
Infrastructure
Layer

Application Deployment
Toolkit

Cross-domain
Infrastructure
Layer

Application
Layer

With ADT we enrich CloNe’s capabilities by moving the application layer closer to
CloNe layers.

WPD Architecture

Infrastructure
Service

Compute Storage Network

Infrastructure
Service

Compute Storage Network

Infrastructure
Service

Compute Storage Network

Distributed
Infrastructure
Service

Application Deployment
Toolkit

Logic

Application
Layer

Decision Module
Configuration

Application
Template

Application

Steering
Daemon

Steering

O
PI

Figure: At the bottom of the architecture VMs are connected with a FNS.
Deployment: Application provider need to provide:

(a) An annotated graph of the application architecture – the Application Template
(b) A Configuration of the used algorithm (parameters, thresholds, etc.)
(c) VM images have a Steering Daemon preinstalled. This bridge between Ap-

plication and Infrastructure enables elastic and adaptive deployment.
ADT: (a) realizes a more holistic management of a complex distributed applications

(b) enables plugged-in Decision Modules (DM) (⇒ Generic Framework)

Generic Framework

Generic: The framework supports ...
... plugin of customized Decision Modules (DMs)
... placeholder to communicate custom data

Customize: DM serves as a frame to plugin a wide
range of algorithms and optimizations.
•The figure below shows the input data and output

actions of a DM.
•ADT provides some interfaces, e.g., obtain topol-

ogy informations, current application deployment,
available Cloud sites, and Network services.

Placeholder: As the Decision Logic can be cus-
tomized, it has to process custom input (OPI) and
compute custom output.

A
D

T

IaaS

Infrastructure

VM

Steering
Daemon

Decision
Module

Configuration

O
P
I

Template

University of Paderborn
Computer Networks Group
Prof. Dr. Holger Karl
http://www.upb.de/cs/cn/

Contact:
Matthias Keller
+49 5251 60-1754
mkeller@upb.de

SAIL
Objective:
FP7-ICT-2009-5-257448
http://www.sail-project.eu/

Document: FP7-ICT-2009-5-257448-SAIL/D-5.5
Date: 2013-02-28 Security: Public
Status: Final Version: 1.0

List of Acronyms

API Application Programming Interface

CloNe Cloud Networking

DCP Distributed Control Plane

FNS Flash Network Slice

GRMP Generic Resource Management Protocol

GUI Graphical User Interface

LNP Link Negotiation Protocol

MPLS Multi-Protocol Label Switching

NetInf Network of Information

OCCI Open Cloud Compute Interface

OCNI Open Cloud Network Interface

QoS Quality of Service

SLA Service Level Agreement

SLL Service Provider Logical Link

TLL Tenant Logical Link

VM Virtual Machine

VoD Video on Demand

VXDL Virtual eXecution Description Language

VPN Virtual Private Network

WAN Wide Area Network

XML eXentisible Markup Language

SAIL Public 27

Document: FP7-ICT-2009-5-257448-SAIL/D-5.5
Date: 2013-02-28 Security: Public
Status: Final Version: 1.0

Bibliography

[1] Future Network Mobile Summit 2012, Berlin, Germany. http://www.futurenetworksummit.
eu/2012/.

[2] Future Media Distribution using Information Centric Net-
works 2013, Stockholm, Sweden. http://www.sail-project.eu/

future-media-distribution-information-centric-networks/.

[3] Hareesh Puthalath et al. Description of Implemented Prototype. Deliverable FP7-ICT-2009-
5-257448-SAIL/D.D.2, SAIL project, October 2012. Available online from http://www.sail-
project.eu.

[4] Paul Murray et al. Cloud Networking Architecture Description. Deliverable FP7-ICT-2009-
5-257448-SAIL/D.D.3, SAIL project, October 2012. Available online from http://www.sail-
project.eu.

[5] Openstack website. http://www.openstack.org. Accessed: 31/05/2012.

[6] F. Wuhib, R. Stadler, and M. Spreitzer. A gossip protocol for dynamic resource management
in large cloud environments. Network and Service Management, IEEE Transactions on, 2012.

[7] Fetahi Wuhib, Rolf Stadler, and Hans Lindgren. Dynamic resource allocation with management
objectives � implementation for an openstack cloud. In Network and Service Management

(CNSM), 2012 8th International Conference on, pages 309 �315, oct. 2012.

[8] Paul Murray et al. Cloud Networking Architecture Description. Deliverable FP7-ICT-
2009-5-257448-SAIL/D.D.1, SAIL project, July 2011. Available online from http://www.sail-
project.eu.

[9] Shubhabrata Roy, Thomas Begin, Patrick Loiseau, and Paulo Gonçalves. Un modèle de tra�c
adapté à la. CoRR, abs/1209.5158, 2012.

[10] S.S. Lor, L.M. Vaquero, and P. Murray. In-netdc: The cloud in core networks. Communications

Letters, IEEE, 16(10):1703 �1706, october 2012.

[11] Nikolaos Laoutaris, Michael Sirivianos, Xiaoyuan Yang, and Pablo Rodriguez. Inter-datacenter
bulk transfers with netstitcher. SIGCOMM Comput. Commun. Rev., 41(4):74�85, August 2011.

[12] Benoit Tremblay et al. Final Harmonised SAIL Architecture. Deliverable FP7-ICT-2009-5-
257448-SAIL/D.A.3, SAIL project, February 2013. Available online from http://www.sail-
project.eu.

[13] pyOCNI - a Python implementation of an extended OCCI with a JSON serialization and a
cloud networking extension. Online URL: http://occi-wg.org/2012/02/20/occi-pyocni/.

[14] Utilization based scheduling for openstack. https://wiki.openstack.org/wiki/

UtilizationBasedSchedulingSpec. Accessed: 28/02/2013.

[15] libnetvirt repository. https://github.com/danieltt/libnetvirt. Accessed: 28/02/2013.

SAIL Public 28

http://www.futurenetworksummit.eu/2012/
http://www.futurenetworksummit.eu/2012/
http://www.sail-project.eu/future-media-distribution-information-centric-networks/
http://www.sail-project.eu/future-media-distribution-information-centric-networks/
http://www.openstack.org
https://wiki.openstack.org/wiki/UtilizationBasedSchedulingSpec
https://wiki.openstack.org/wiki/UtilizationBasedSchedulingSpec
https://github.com/danieltt/libnetvirt

	Executive Summary
	Introduction
	Summary of Prototyped Demonstrators
	Dynamic Enterprise on the CloNe Integrated Testbed
	Dynamic Resource Management
	libNetvirt: a Network Virtualization Library
	Model-driven Resource Allocation for Elastic Video
	In-Network Datacenter for Bulk Data Transfer
	An Administrative Portal for a Distributed Cloud
	Elastic NetInf on the CloNe Testbed

	Conclusion
	Appendix: Posters for Demonstrated Prototypes
	List of Acronyms
	Bibliography

