
Objective FP7-ICT-2009-5-257448/D-5.4

Future Networks

Project 257448

“SAIL – Scalable and Adaptable Internet Solutions”

D-5.4
(D.D.3) Refined Architecture

Date of preparation: 2012-10-31 Revision: 1.0
Start date of Project: 2010-08-01 Duration: 2013-01-31
Project Coordinator: Thomas Edwall

Ericsson AB

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

Document Properties

Document Number: D-5.4

Document Title:

(D.D.3) Refined Architecture

Document Responsible: Azimeh Sefidcon (EAB)

Document Editor: Paul Murray (HP)

Authors:

Enrique Fernandez (EAB) Bob Melander (EAB)
Hareesh Puthalath (EAB) Azimeh Sefidcon (EAB)
Victor Souza (EAB) Ayush Sharma (FHG)
Sathyanarayanan Rangarajan(FHG) Paul Murray (HP)
Luis Vaquero (HP) Suksant Sae Lor (HP)
Rolf Stadler (KTH) Fetahi Wuhib (KTH)
Houssem Medhioub (IT) Marcio Melo (PTIN)
Joao Soares (PTIN) Jorge Carapinha (PTIN)
Bjorn Bjurling (SICS) Daniel Gillblad (SICS)
Rebecca Steinert (SICS) Pedro A. Aranda (TID)
Matthias Keller (UPB) Fabian Schneider (NEC)
Daniel Turull (KTH) Thomas Begin (INRIA)
Paulo Goncalves (INRIA) Avi Miron (Technion)

Target Dissemination Level: PU

Status of the Document: Final

Version: 1.0

Production Properties:

Reviewers: Bengt Ahlgren (SICS), Hannu Flink (NSN), Benoit Tremblay
(EAB)

Document History:

Revision Date Issued by Description

1.0 2012-10-31 Paul Murray Final Version

Disclaimer:
This document has been produced in the context of the SAIL Project. The research leading to these results has
received funding from the European Community’s Seventh Framework Programme (FP7/2010–2013) under grant
agreement n◦ 257448.
All information in this document is provided “as is” and no guarantee or warranty is given that the information
is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.
For the avoidance of all doubts, the European Commission has no liability in respect of this document, which is
merely representing the authors view.

SAIL Public i

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

Abstract:
This document describes the final cloud networking architecture proposed by SAIL work package
D. Cloud networking aims at providing on-demand elastic network services to connect existing
data centre based cloud infrastructures across wide area networks. In order to achieve that we
propose the flash network slice, a network resource that can be provisioned and reconfigured in
a timeframe that is compatible with current provisioning of virtual machines in a data centre.
We consider a multi-provider scenario, where network and data centre providers must cooper-
ate to implement global virtual infrastructures. This is enabled through provisioning interfaces
and inter-provider protocols defined in the present architecture. The architecture introduces a
layering of functions, interfaces and interactions within single cloud network operators, across
cloud network operators, and with cloud network customers to implement complete end-to-end
services. Management algorithms for user goal translation, fault and resource management are
presented, including results from practical experimentation and simulations. Security goals and
policy based access control mechanisms are described. This final version of the cloud network-
ing architecture represents a refinement over the initial architecture after experience gained in
prototyping and simulating management and security functions and the implementation of a
complete integrated multi-data centre, multi-operator cloud networking eco-system.

Keywords:

cloud computing, cloud networking, network virtualisation, infrastructure as a service, inter-provider
virtual infrastructure, resource management, cloud network security

SAIL Public ii

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

Executive Summary

This document is a public deliverable of the Scalable Adaptive Internet Solutions (SAIL) EU-
FP7 project [1] and describes the Cloud Networking (CloNe) architecture. CloNe provides on-
demand elastic network services to connect existing data centre based cloud infrastructures across
a wide area network. The concept of a Flash Network Slice (FNS) has been proposed, a network
resource that can be provisioned and reconfigured in a timeframe that is compatible with current
provisioning of virtual machines in a data centre. As CloNe considers a multi-provider scenario,
the architecture defines roles, responsibilities, interfaces and control functions for providers to
cooperatively implement global virtual infrastructures, on-demand and paid for according to use.

An initial version of the CloNe architecture was reported in deliverable D-5.2 Cloud Networking
Architecture Description [2]. That version guided the design of the complete system prototype
later reported in D-5.3 Description of Final Prototype [3] as well as providing a context for research
into the implementation of management and security functions that make up components of the
architecture. The architecture reported in this document is a refinement of that initial version
based on the experience gained in these prototyping exercises.

The main advancements of this version of the architecture over the initial version relate to the
definition of the FNS, the layering of the architecture, re-factoring functions in the management
framework, and extension of the functions covered by security aspects.

The FNS concept has been expanded to include more detail on how constraints and network func-
tions can be included in its definition, and a better understanding of the division between generic
and implementation specific aspects has been derived. This is the result of practical application of
the concepts in multiple technologies for the complete system prototype.

The functions and interactions of the infrastructure service provider have been more cleanly
separated out into four layers: service, inter provider, intra provider and resource layer. The service
and inter provider layers were intermingled in the initial architecture. These are now recognised as
two different conceptual layers. The former deals with abstract infrastructure models and service
objectives exchanged within the user-provider service model and enacted through the infrastructure
service interface. The latter deals with collaboration among peer providers and enacted through the
Distributed Control Plane (DCP), including negotiation of shared configuration details, discovery
of capabilities, and management and security control functions.

The management framework of the architecture has been re-factored, identifying resource and
performance monitoring and resource control as independent functions from fault management
and resource management. Also, the Distributed Knowledge Plane (DKP) has been removed as
a functional block. The DKP provided distributed information access. This is now viewed as an
artefact of a distributed implementation design choice and not an architectural function.

The security aspects have been expanded to accommodate the service layer delegation concept.
Infrastructure service users and infrastructure service providers may independently delegate access
rights to, and implementation of, virtual infrastructure respectively without informing one another.
This forms chains of responsibility that need to be accommodated in authorisation. Moreover, an
intrusion detection function has been added to the architecture.

Finally, this document includes examples of how dynamic applications operate within the CloNe
architecture to dynamically and elastically accommodate demand for their services. The two pri-
mary scenarios for these applications are Dynamic Enterprise, dealing with on-demand provisioning
of business systems across data centres interconnected by networks, and Elastic Video Distribution,

SAIL Public iii

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

dealing with on-demand provisioning of applications at the edge of the network.

SAIL Public iv

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

Contents

1 Introduction 1
1.1 Scenarios and use-cases . 2
1.2 Requirements . 3
1.3 Scope and Focus . 4
1.4 Recent related work . 4
1.5 Document Outline . 5

2 The CloNe Architecture 6
2.1 Overview . 6
2.2 Service Model . 8
2.3 Infrastructure Description . 10

2.3.1 Flash Network Slice . 10
2.3.2 Information Model . 11
2.3.3 Data Description and Interchange . 13

2.4 Architecture Layers . 14
2.4.1 Resource Layer . 14
2.4.2 Intra-Provider Layer . 16
2.4.3 Inter-Provider Layer . 17
2.4.4 Service Layer . 18

2.5 Management Aspects . 19
2.5.1 Management Architecture . 21
2.5.2 Management Functions in the Intra-Provider Layer 22
2.5.3 Management Functions in the Inter-Provider and Service Layers 23

2.6 Security Aspects . 23
2.6.1 Security Architecture . 25
2.6.2 Security Functions in the Intra-Provider Layer 25
2.6.3 Security Functions in the Inter-Provider Layer 26

3 Elaboration of the Flash Network Slice Concept 27
3.1 Architectural Constraints . 27
3.2 Basic Components of the FNS . 28
3.3 Mapping FNS components to CloNe protocols . 30

3.3.1 VXDL and OCNI . 30
3.3.2 Inter-Provider Coordination in CloNe: DCP 31

3.4 Materializing FNS in the WAN . 31
3.5 Virtual Infrastructure Example . 34

4 Elaboration of the Intra-Provider Layer 37
4.1 Management Functions—Operations and Interactions 37
4.2 Implemented Approaches to Goal Translation . 39

4.2.1 VXDL as a Language for High-level Goals . 40
4.2.2 Goal Translation Algorithm . 41

SAIL Public v

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

4.3 Implemented Approaches to Fault Management . 43
4.4 Implemented Approaches to Resource Management 44

4.4.1 Network Optimization . 45
4.4.2 Scalable Compute Resource Optimization . 46
4.4.3 Joint Resource Allocation . 47
4.4.4 Oblivious Load Balancing . 49
4.4.5 Probabilistic Demand Prediction . 50
4.4.6 Customizable Cloud Resource Management 51

4.5 Implemented Approaches to Security Management 53
4.5.1 SIEM based Intrusion Detection System . 54
4.5.2 Security Goal Translation function . 55
4.5.3 Auditing and Assurance function . 56
4.5.4 Identity Management . 57
4.5.5 Access Control . 59

5 Elaboration of the Inter-Provider and Service Layers 61
5.1 Main Concepts . 61

5.1.1 Declarative vs Procedural Knowledge . 61
5.1.2 Distributed Computing Model in CloNe . 61
5.1.3 The Distributed Control Plane . 62
5.1.4 Goal Translation . 65

5.2 Implemented Approaches to Inter-Provider Management and Security 66
5.2.1 Object Location . 66
5.2.2 Link Negotiation Protocol . 67
5.2.3 Access Control . 68

5.3 Implemented Approaches to Service Layer Management and Security 68
5.3.1 Goal Translator . 68

5.4 Load-Adaptive Deployment . 69
5.4.1 Need for Dynamic allocation and Load Balancing 70
5.4.2 A Possible Implementation Approach for Dynamic Adaptation 71

6 Application use-cases played out 75
6.1 Dynamic enterprise . 75

6.1.1 Tenant interaction . 75
6.1.2 Components involved . 77

6.2 Elastic Video Distribution . 77
6.2.1 Tenant interaction . 78
6.2.2 Components involved . 78

7 Conclusions 80
7.1 Contributions . 80
7.2 Closing Remarks . 81

List of Figures 82

List of Tables 83

List of Acronyms 84

References 86

SAIL Public vi

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

1 Introduction

Cloud computing is a novel service delivery model enabled by virtualisation that supports cost-
efficient usage of computing and storage resources, featuring dynamic scaling and on-demand pay-
per-use services. While the adoption of cloud computing services has become a reality, it is still
hard to guarantee access to those resources over the existing Internet. Existing network services
are not dynamically allocated and not integrated with Infrastructure as a Service (IaaS) clouds.
The lack of protocols and interfaces to allow for that vision to materialize is a hindrance.

The vision of Cloud Networking (CloNe) is to fully realize the potential of networking in the cloud
computing paradigm. More specifically, CloNe aims at providing cloud network services compliant
to application requirements in a dynamic and automated way connecting customers to the cloud
and connecting different parts of the infrastructure, i.e., geographically distributed data centres.
Considering the current state of the technology, this is achievable by enabling the co-existence of
legacy and new networks via virtualisation of resources and by fully integrating networking services
with existing cloud computing services. CloNe embraces legacy networks by creating an abstraction
layer where those network services can be encapsulated.

CloNe can dynamically expand usage of resources integrating performance and fault monitoring
for dynamic resource allocation. The CloNe solution is able to connect private networks and
infrastructures together across provider boundaries and technology boundaries. CloNe leverages
virtualisation techniques not only for migration but for flexibility provisioning different kinds of
application services. It embeds the concept of federation among different service providers, namely
network and infrastructure providers.

In fact, network requirements have been so far neglected when IaaS services are deployed. How-
ever, as more business critical applications move to data centres, cloud customers will demand the
integration of networking services with cloud services. The network services proposed by CloNe are
provided through Flash Network Slices (FNSs), an abstract network resource that hides complexity
and provides guaranteed connectivity to its user. The network services will be used in two differ-
ent occasions. First, a service connecting the customer to the data centre and secondly, a service
connecting infrastructures in different data centres. Scalable Adaptive Internet Solutions (SAIL)
proposes the integration of those network services with existing IaaS services. This missing ele-
ment is what CloNe brings to the cloud computing paradigm. How that integration happens is the
subject of CloNe’s architecture.

More specifically, the primary objective of building the CloNe architecture is to define roles,
responsibilities, interfaces, and a reference model for deploying complex applications using FNSs
over multiple, heterogeneous, multi-operator computing and storage clouds. The architecture work
was initially presented in the deliverable D-5.2 (D-D.1) Cloud network architecture description [2].
During prototyping phase, the architecture was put to test and capabilities of the cloud networking
architecture were demonstrated. This demonstration not only shows the networking capabilities
in the data centre, but also shows dynamic network provisioning in Wide Area Network (WAN)
connecting data centres. Through implementation the details of the architecture were specified and
tested. Experimental research through prototyping played an important role fine-tuning the details
of proposed solutions and making the concepts developed in the first version of the architecture
a palpable reality. This document presents the final refined version of the architecture where
experiences from prototyping are included.

The architecture presented in this document differs from the initial one in the following ways: the

SAIL Public 1

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

understanding of network functions and constraints of a FNS and its modelling has been deepened;
the separation of concerns presented by the new layered model where a service layer dealing with
information and service objectives has been defined; the changes to the management architecture
whereby two functions (Resource and Performance Monitoring, and Resource Control) were made
independent to increase modularity and reduce overlapping responsibilities; the Distributed Knowl-
edge Plane (DKP), part of the previous management architecture, has been removed since it is seen
as an implementation artefact and not an architectural function; the security has been added of a
delegation aware authorisation service, as well as an intrusion detection function.

The rest of this Chapter is organized as follows: Section 1.1 reminds the reader of the two
previously defined scenarios of CloNe. Section 1.2 presents a categorized list of requirements derived
from the scenarios and use-cases. Section 1.3 presents research items that are within and outside
of the scope of this work. Section 1.4 is intended to put our work in the light of recent publications
and industrial initiatives flourishing in the area of cloud network. Finally, Section 1.5 presents the
outline for the rest of the document.

1.1 Scenarios and use-cases

Having CloNe vision in mind, we started by defining the scenarios and use-cases for cloud net-
working. The scenarios were the base for defining the main players and the technical requirements,
which formed the foundation of the architecture. The two scenarios that were defined were the
Dynamic Enterprise and the Elastic Video Distribution. Under each of these scenarios, a number
of specific use-cases that shows the benefits of CloNe’s vision were specified. These scenarios and
use-cases have already been extensively described in the deliverable D-2.1 (D-A.1) Description of
project wide scenarios and use cases[4] and they will be briefly included here for completeness.

Dynamic Enterprise. This scenario presents and depicts the provisioning of IT/IS solutions from
the cloud network ecosystem to the enterprise market. It illustrates how the infrastructure can be
reconfigured to adapt to mobile users during planned or spontaneous events. One of the objectives
of the dynamic enterprise prototype is to show the establishment of an elastic FNS, connecting
cloud computing and storage resources from multiple data centres over the WAN.

Cloud computing has demonstrated the ability to flexibly scale services to provide on-demand
and pay-per-use IT/IS solutions. With FNS capabilities, cloud networking introduces dynamic
flexible network provisioning into the equation. An enterprise will be able to dynamically adapt its
IT/IS services to include new remote locations, added functionalities and new entities within its
boundaries in a swift and effortless manner in accordance with the business requirements dynamics.
This flexibility allows an enterprise to go beyond scaling IT/IS services for its core operations to
provision and connect these services for short and long term projects both internal and external.
The use-cases defined within this scenario were: media production, remote auditing, business goal
management, and virtual desktop.

Elastic Video Distribution. This scenario shows the offering of video and similar services from a
cloud network ecosystem to the retail market with enhanced Quality of Experience (QoE), provided
by distributed computational resources within the network or close to the users. It shows how
virtual infrastructure can be dynamically deployed over multiple infrastructure service provider
(data centre or network) domains. For example, a large gathering of people creates a demand on
the network that is higher than what the network infrastructure is dimensioned for, causing the
user experience to deteriorate.

The scenario implies a framework of distributed resources in a cloud model, meaning that cloud
resources are geographically scattered inside the operator network in a more fine-grained fashion
than traditional centralized data centre clouds. A concrete example of what this could mean is the
placement of cloud servers in operator network edge sites. In this scenario, content providers will

SAIL Public 2

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

no longer need dedicated physical servers but will use on-demand virtual servers. This means that
the deployment will allow multiple content providers to share the same distribution and computing
infrastructure in cloud model. The use-cases defined within this scenario were: elastic live video
distribution, distributed gaming, elastic video on-demand distribution, and video conferencing.

1.2 Requirements

The use-cases mentioned above and detailed in [4] have generated a set of technical requirements
which are fulfilled by the current architecture. The requirements were grouped onto three categories,
according to the area they relate to. The first group are the requirements related to networking,
the second to management, and the third to security. The list herein presented is not meant to be
an exhaustive list of all requirements; instead, it is meant to bring focus to relevant requirements
that have direct implications on the presented architecture.

The network requirements are (from general to more specific ones):

• Ability to control and manage heterogeneous network technologies

• Ability to scale up or down the network resource

• Ability to swiftly add and remove remote sites to an existing network service

• Ability to allocate network resources through a common service interface that is technology
independent

• Automate the connection of Virtual Machines (VMs) deployed across geographically dis-
tributed data centres through the network

• Provide end-to-end traffic isolation for different tenants

• To allow for the specification of multi-tier application topologies and to have them automat-
ically deployed in data centres and wide area networks

• Ability to scale independently the different tiers of multi-tier applications and apply firewall
properties between tiers or amongst nodes

• Ability to specify Quality of Service (QoS) parameters associated to the network service (e.g.,
capacity)

• Ability to specify the type of network service needed (e.g., broadcast capabilities)

The management requirements are:

• Ability to adapt resource management to the current state of the infrastructure

• Ability to dynamically relocate resources to always satisfy the user constraints

• Ability to support the allocation of infrastructure with specific requirements (or constraints)

• Ability to select high level goals as metrics to optimise service deployment

• Ability a user has to specify the elastic behaviour of an application

• Ability to scale a service up and down automatically as a result of service usage

• Ability to perform root cause analysis and localization for fault-handling

• Monitoring algorithms that operate on physical and virtual layers, collecting and modelling
performance behaviour

The security related requirements are:

SAIL Public 3

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

• The user must be able to request a security property (location, standard, isolation)

• The provider must be able to check authorisation for access control

• The provider must be able to authenticate identities

1.3 Scope and Focus

Work Package D (WPD) committed to the mission of providing a unified system for creation,
control, management and optimization of virtual infrastructures across multiple providers. Virtual
infrastructures are composed of distributed compute, storage and networking resources and the
provisioning is on-demand and in an elastic manner. The scope and focus of contributions of our
work include:

• Proposal of new network service interfaces that can easily be integrated with existing IaaS
services

• Protocols and mechanisms allowing a distributed virtual infrastructure to be deployed across
data centres and wide area networks

• Proposal of enhanced IaaS interfaces where advanced networking features are included

• Definition of customer facing interfaces allowing for deployment of distributed virtual infras-
tructures and specification of application requirements and goals

• Basic authentication solutions for cloud networking where delegation of infrastructure may
happen

• New management mechanisms to optimize the use of resources in a data centre

It is not in the scope of architectural contributions:

• Defining new network virtualisation techniques (e.g., VXLAN, OpenFlow)

• Defining new routing or switching solutions to WAN or data centres (e.g., Multiprotocol Label
Switching (MPLS), Virtual Private LAN Service (VPLS))

• Defining new path computation engines for existing networks

The CloNe architecture completes the cloud computing picture by addressing networking as-
pects introducing the concept of FNS, which is a network resource that can be provisioned and
dimensioned on a time scale comparable to existing compute and storage resources. Through FNSs,
CloNe also provides dynamic connectivity services on-demand mirroring the pay-as-you-go business
model of existing cloud services.

1.4 Recent related work

In the past years, the area of cloud networking has started to gain more attention in the academia
and industry. At the beginning of the SAIL project very little work in the area existed. Today, the
term is established and the amount of papers published at academic conferences has been steadily
increasing. A proof point is the number of papers produced by the foremost networking conference
(SIGCOMM 2012 [5]) on data centre related issues, which was of 9/31 (29 percent).

Given the attention and traction around this research area, a new IEEE international conference
has been created (1st IEEE International Conference on Cloud Networking 2012). CloNe partners
have had two papers accepted in that conference, one being nominated for Best Paper Award. SAIL

SAIL Public 4

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

has organized in conjunction with the EU project GEYSERS [6] a workshop on Cloud Networking
at FuNeMS [7].

A recent work relevant to part of CloNe’s work was presented at SIGCOMM 2012 [8]. The
authors of that paper present a network aware service placement method that moves a service in
a distributed data centre environment depending on the network conditions and the user location.
CloNe however considers the application requirements provided in the form of constraints or goals.
Those are then mapped to an IaaS provider and continuously optimized if network conditions
change.

Aiming at sustainability, [9] introduces electricity cost and carbon footprint as another variable
along with server workload when redirecting a user request to an appropriate data centre. CloNe
provides energy efficient data centres through the creation of a specific management objectives (i.e.,
server consolidation) that can be used in a data centre [10]. CloNe has designed and developed two
data centre management methods for VM placement, one tailored at the initial placement and the
other at live optimizations, both featuring the choice of different management objectives.

Not only academia, but also various standardization bodies have started efforts in the area of
cloud computing (e.g., OGF), cloud networking (IETF’s Network virtualisation Overlay Working
Group), cloud management (DMTF CLOUD Working Group), amongst others. Even though
the number of standardization bodies focusing on cloud computing has increased, the scope and
responsibility of each one of them is sometimes overlapping and/or limited. This unfortunately
creates a scattered standardization picture that will most likely improve as the technology matures.

It is important to emphasize the fact that most of the de facto standardization work in cloud
computing and cloud networking has been driven by the open source community. Citrixes’ Cloud-
Stack was released as open source under the Apache Software License. The most prominent open
source cloud management system is OpenStack that in a very short time managed to create a
large community of contributors and strong industry support. Support for advanced networking is
slowly progressing in OpenStack. As of October 2012, the latest development is the acceptance of
Quantum [11], a layer 3 network service for data centres, as a core project in OpenStack. CloNe
has released parts of its work as open source: libnetvirt, pyOCNI, and Cloud Message Brokering
Service (CMBS).

1.5 Document Outline

This document is organized in a way to provide coherent and complete overall view of CloNe
architecture. Chapter 2 presents the main components of the architecture, interfaces and protocols.
An introduction to the management and security aspects that will be further refined later in the
document is found there. Chapter 3 then presents the network model (FNS) and mapping to specific
network technologies. Chapter 4 presents the solutions to the management of resources within one
provider, while Chapter 5 focuses on inter-provider questions. Chapter 6 presents the envisioned
way a customer/tenant will interact with the CloNe system and how the internal components are
put together to implement the proposed use-cases. Finally, Chapter 7 presents closing remarks.

SAIL Public 5

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

2 The CloNe Architecture

This chapter describes the CloNe architecture at a conceptual level. Throughout we make reference
to four roles that actors may adopt in any given context: tenant, infrastructure service user,
infrastructure service provider, and administrator. So we begin by defining these roles as follows:

• Tenant participates in a business relationship with an infrastructure service provider in which
the tenant agrees to pay for the provision of virtual infrastructure.

• Infrastructure Service User accesses a virtual infrastructure service in order to obtain,
examine, modify and destroy resources owned by a tenant.

• Infrastructure Service Provider offers an infrastructure service to tenants that may be
accessed by infrastructure service users to obtain, examine, modify and destroy resources.

• Administrator has administrative authority over underlying virtual or physical equipment
(the administrative domain) used to implement virtual resources.

2.1 Overview

Resource Layer

Administrative Domain

Compute Resource

Storage Resource

Network Resource/
Flash Network Slice

Resource Coordination

Provisioning/Reporting

Key

Intra-Provider LayerR
es

o
u

rc
e

C
o

n
fi

g
In

fr
as

tr
u

ct
u

re
C

o
n

fi
g

In
fr

as
tr

u
ct

u
re

C
o

n
fi

g

Inter-Provider Layer

Infrastructure Service User/
Tenant

Infrastructure Service
Provider

In
fr

as
tr

u
ct

u
re

D
es

cr
ip

ti
o

n

Service Layer

Infrastructure Description

Peer Coordination
(Distributed Control Plane)

Figure 2.1: Architecture overview

SAIL Public 6

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

The architecture is organised according to the four layers depicted in Figure 2.1. The resource
layer is concerned with virtualisation of underlying equipment to implement individual virtual
resources. The intra-provider layer deals with organisation and coordination of virtual infrastruc-
tures within a single infrastructure service provider. The inter provider layer is concerned with
coordination that has to occur between providers where they collaborate to interconnect virtual
infrastructures. The service layer renders the virtual infrastructure service itself and accommodates
business relationships among the actors.

The colours of the infrastructure service providers and administrative domains represent the
same actor operating in each layer. As can be seen from Figure 2.1 not all infrastructure service
providers have an administrative domain or appear in the lower layers. The inter-provider and
service layers may contain providers whose sole purpose is to coordinate virtual infrastructures
implemented by other providers and to cooperate in presenting them as a service for tenants.

Non-collaborative infrastructure service providers, such as those that exist today, also fit in this
architecture, but would be absent from the inter provider layer. Such providers operate in isolation
and do provide service, but do not interact with their peers to coordinate their services. This case
is not shown.

CloNe introduces a new network resource called the FNS. This is implemented by network
virtualisation technologies in the resource layer and represented as a virtual resource within virtual
infrastructures in the other layers. CloNe defines a new virtual infrastructure information model to
include the FNS. The infrastructure service users interact with the infrastructure service providers
by exchanging descriptions based on this information model.

CloNe also extends the infrastructure service functions to enable collaboration among service
providers. This service model is implemented by the service layer.

Management
Aspect

Security
Aspect

Service Layer

Inter-Provider Layer

Intra-Provider Layer

Resource Layer

Figure 2.2: Management and security aspects occur in each layer of the architecture

Management and security aspects cut across all layers of the architecture as shown in Figure 2.2.
Each intersection between management or security aspects and an architecture layer represents
functions implemented in different interfaces or with a different scope of control. The functions
come together within each aspect to provide coherent operation of the service.

The extensions to the service model, the infrastructure description (including the new FNS
network resource and information model), the architecture layers, and the management and security
aspects are described in the remainder of this chapter. The subsequent chapters describe concrete
implementations developed in prototypes of the architecture.

SAIL Public 7

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

2.2 Service Model

Infrastructure as a Service (IaaS) is a business relationship between the tenant and infrastructure
service provider roles in which the tenant pays the infrastructure service provider to implement
virtual infrastructure. This relationship is depicted in Figure 2.3 in which a customer organisation
(acting as tenant) obtains access to virtual infrastructure implemented by a cloud operator (acting
as infrastructure service provider).

Customer
(Tenant)

Cloud Operator
(Provider)

Business
Relationship

Business
Relationship

PaymentPayment

Virtual InfrastructureVirtual Infrastructure

Figure 2.3: The IaaS service model

This simple arrangement is already implemented by existing cloud operators. CloNe extends the
IaaS functions to include collaboration among infrastructure service providers by adding mecha-
nisms to support delegation and cooperation.

Delegation

The CloNe infrastructure service uses delegation to allow additional entities to participate in the
business relationship. There are two forms of delegation, as depicted in Figure 2.4.

The tenant is able to delegate the right to limited access or control of its virtual infrastructure
to a third party, including the right to create new infrastructure. This changes the nature of the
relationship as depicted in Figure 2.4(a). As shown, the third party also obtains access to the
virtual infrastructure from the provider, but does not pay for it. The third party is viewed as
representing, or acting on behalf of, the tenant and it is the tenant that retains ownership.

An infrastructure service provider is able to exploit a similar behaviour to delegate the im-
plementation of virtual infrastructure to yet another provider. As shown in Figure 2.4(b), this
involves two business relationships: one between the customer organisation (the first tenant) and
the intermediary cloud operator (acting as a provider); and a second between the intermediary
cloud operator (this time acting as a tenant) and another cloud operator (the second provider).
Instead of implementing the virtual infrastructure directly, the intermediary contracts the other
cloud operator to implement it under a second business relationship between them: this infrastruc-
ture is owned and paid for by the intermediary. The intermediary can delegate access rights to
the customer organisation and can mediate management interactions, giving the impression that
the virtual infrastructure is provided by the intermediary. In return it charges the customer, thus
fulfilling its contract under business relationship1.

SAIL Public 8

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

Customer
(Tenant)

Cloud Operator
(Provider)

Business
Relationship

Business
Relationship

PaymentPayment

Virtual InfrastructureVirtual Infrastructure

Third Party

(a) Controlled delegation of access rights

Customer
(Tenant1)

Intermediary
Cloud Operator
(Provider1 / Tenant2)

Business
Relationship1

Business
Relationship1

PaymentPayment

Virtual InfrastructureVirtual Infrastructure

Cloud Operator
(Provider2)

Business
Relationship2

Business
Relationship2

PaymentPayment

Virtual InfrastructureVirtual Infrastructure

(b) Controlled delegation of implementation

Figure 2.4: Delegation in the CloNe IaaS service model

Cooperation

The CloNe infrastructure service includes the notion of cooperation across cloud operators, as
depicted in Figure 2.5.

A customer organisation may be the tenant of multiple cloud operators and may wish to inter-
connect virtual infrastructures implemented by each. Each cloud operator will be in a different
business relationship with the customer and will view the customer as a different tenant. The cloud
operators may need to interact directly with one another to coordinate the interconnection. The
customer can enable this interaction by delegating appropriate access rights to each cloud operator.
The operators may now charge the customer (their respective tenants) for the virtual infrastructure
they provide and for the interconnection that has been authorised.

This model of coordination naturally applies to the case of two different customer organisations
choosing to interconnect their virtual infrastructures.

Business Models

There are a variety of business models in use for existing cloud infrastructure services. Pricing mech-
anisms range from spot markets for virtual machines, to escalating pricing for network bandwidth,
to fixed pricing for various units of resource. Entire cloud infrastructure service implementations
can be contracted as a private managed service. CloNe does not seek to impose a specific business
model, nor does it attempt to anticipate future business arrangements.

SAIL Public 9

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

Business
Relationship1

Business
Relationship1

PaymentPayment

Virtual InfrastructureVirtual Infrastructure
Customer
(Tenant1)
(Tenant2)

Cloud Operator
(Provider1)

Cloud Operator
(Provider2)PaymentPayment

Business
Relationship2

Business
Relationship2

Figure 2.5: Coordination in the CloNe IaaS service model

The delegation principle provides complete flexibility for providers to come to business arrange-
ments among themselves, without exposing those arrangements to customers or limiting the possible
business models available to customers.

2.3 Infrastructure Description

Most components and interfaces of the CloNe architecture need to communicate descriptions of
virtual infrastructure. Functions in the resource layer receive detailed resource configuration re-
quests; the intra-provider layer receives configurations describing groups of resources and their
relationships; the intra-provider layer exchanges information among providers; and the service
layer responds to high level requests for virtual infrastructure and reports on its status. CloNe
introduces an information model and data description techniques that facilitate these interactions
throughout the architecture.

The CloNe virtual infrastructure includes a new network resource type, called the FNS, that
supports the service model described above. The following introduces the FNS and an information
model that includes it. In addition, data description techniques that support the delegation and
cooperation aspects of the service model are described.

2.3.1 Flash Network Slice

The Flash Network Slice (FNS) is a concept of a virtual network introduced by CloNe with the
following features:

• It is a network resource providing a message forwarding communication capability.

• It can be connected to VMs and other FNSs

• It can be connected to FNSs across administrative domain boundaries.

• It has quality of service properties and network functions associated with message forwarding
between resources connected to it.

SAIL Public 10

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

• It is established automatically and in a time frame comparable with existing virtual infras-
tructure resources such as VMs.

LinkLink

Constraint
Bandwidth: 100Mb

between A & B
A

B

Function
SNAT

KeyKey

Virtual MachineVirtual Machine

Flash Network SliceFlash Network Slice

PortPort

Attachment pointAttachment point

LinkLink

Constraints / functionsConstraints / functions

Figure 2.6: Virtual infrastructure spanning two administrative domains

The FNS, depicted in Figure 2.6, is based on the typical cloud computing concept of a virtual
network as a resource that can be provisioned within an administrative domain. It has a number
of ports that are access points to its message forwarding service. VMs can be connected to a port
via network interfaces. Two FNS can be linked together between special ports, called attachment
points, that extend the message forwarding behaviour across the link. FNSs linked in this way
implement a larger virtual network that is functionally equivalent to a single FNS. This feature can
be used to construct a network from portions that are under the control of different administrative
domains or that have different implementations. The interconnection of FNS can also be used to
connect two independent infrastructures.

The FNS is a generic concept that does not specify what type of communication occurs beyond
message forwarding. It can be specialised to specific types of network service or to specific network
technologies such as a layer 2 network that transports Ethernet frames or a layer 3 network that
transports IP packets. In the former example, the ports would be assigned MAC addresses, the
FNS would correspond to a broadcast domain and two such FNS could be linked by a layer 2 tunnel
between tunnelling attachment points. In the later, the endpoints would additionally be assigned
IP addresses, but the broadcast domain need not be extended across a link between FNS.

Ports can have properties and functions associated with them. A property defines a constraint
on the port or between ports. A function defines a network function applied at the port. Multiple
ports may have access to the same network function. This can be used, for example, to apply
filtering or address translation at attachment points, or to provide a network service to all ports
on an FNS.

The mapping of FNS concepts to implementation technologies is described in detail in Chapter 3.

2.3.2 Information Model

Figure 2.7 is a UML class diagram representing a virtual infrastructure at the conceptual level. This
representation is highly influenced by existing cloud computing information models. The following
describes the main classes of the model.

SAIL Public 11

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

-OwnerIdentity

Infrastructure

-ResourceIdentity

Resource

1 *

-ProviderIdentity

Infrastructure Service Provider

1 1

FNS Compute Storage

-InterfaceName

NetworkInterface

-InterfaceName

StorageInterface

1 0..* 0..* 1

1

0..*

-PortIdentity

Port

1 0..1

AttachmentPoint

«extends»

NetworkFunction

*

*

NetworkConstraint

*

*

0..*2 Link

1

*

Figure 2.7: User view of virtual infrastructure

Resources

The resource is the basic class in the information model corresponding to the virtual resource
concept. The three types of resource are compute, storage and FNS. Compute represents a virtual
compute resource, such as a virtual machine. Storage represents a virtual storage resource, such as
a volume. An FNS is the additional CloNe resource type that replaces the usual network resource
providing on-demand guaranteed end-to-end message delivery.

Flash Network Slice

The FNS class and the associated Port, AttachmentPoint, Link, NetworkConstraint and Network-
Function classes represent the FNS concepts described above. The FNS has a (possibly empty)
collection of Ports that can be associated with the NetworkInterface class used to connect Compute
information objects. The AttachmentPoint is the specialised version of a Port used with Links to
represent interconnection of FNS.

The FNS, Port and Link form an abstract representation of a virtual network that can be
specialised to define implementation details as described above. The classes defined here represent
implementation independent characteristics that apply to all FNS regardless of implementation.

Port

A Port may have NetworkConstraint and NetworkFunction classes associated with it. NetworkCon-
straints represent characteristics of the port, such as bandwidth or latency, and may be associated

SAIL Public 12

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

with multiple ports. For example, a NetworkConstraint may represent a minimum bandwidth for
a particular port, between two specific ports, or between all the ports of an FNS.

A NetworkFunction represents an in-network function applied to the messages sent to or from a
port. Using NetworkFunctions in combination with Links between FNS it is possible to represent a
restricted communication flow between FNS or to specify a boundary between different addressing
schemes in the two.

An AttachmentPoint is a special type of port in that it extends the message forwarding behaviour
of the FNS across a Link. Ultimately, it is expected that an FNS is implemented within the control
of a single autonomous administrative domain, whereas a Link may be coordinated across the
boundaries of administrative domains. In this case the AttachmentPoint represents the endpoint
for communication between domains.

Infrastructure

The Infrastructure class corresponds to the virtual infrastructure and represents a collection of
resources owned by a single tenant (OwnerIdentity) and related to a single infrastructure service
provider (ProviderIdentity). A resource can be part of only one infrastructure, but a single tenant
may own multiple infrastructures at a single provider, implying multiple separate collections. The
FNS of two infrastructures can be interconnected by Links.

This definition of an infrastructure implies that if a tenant owns resources at two different
providers they are necessarily part of two different infrastructures. This is indicative of the fact
that the tenant has independent relationships with the two providers, as described in Section 2.2.
The case of an infrastructure service provider delegating implementation of an infrastructure to
another provider is not represented in the model. In practice the delegating provider (called the
intermediary in Section 2.2) would generate a new model of those infrastructures, representing a
transformation of the original, and would be responsible for maintaining the relationship between
the models.

2.3.3 Data Description and Interchange

The information model can be given concrete specification by encoding it using a data description
language. Two variations of data description have been developed in CloNe, including Virtual
private eXecution infrastructure Description Language (VXDL) [12], a resource description lan-
guage used to describe infrastructure topologies including networks, and Open Cloud Networking
Interface (OCNI) [13], an extension the Open Cloud Computing Interface (OCCI) standard [14, 15]
currently used as the interface to existing cloud computing infrastructure managers such as Open-
Nebula [16] and OpenStack [17]. These can be exchanged in interchange formats as documents and
have been used in the prototype described in [3].

A useful feature of data descriptions is the reference, a link to information defined elsewhere.

References

References are implemented by Universal Resource Identifiers (URIs) used to locate data descrip-
tions that may be obtained on demand. References allow information models to be partitioned
into multiple data description documents that can be communicated and retained separately. This
separation can be used to isolate information for access control purposes: references can be passed
around, but only an authorised entity can resolve them, contributing to our information hiding
objective (i.e., providers may not be willing to disclose information to each other). Similarly,
they allow late binding of information, supporting the transparent transformation and indirection
required for delegation.

SAIL Public 13

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

A single provider does not need to be aware of all the infrastructure owned by a particular ten-
ant, it only needs to know its own part. This fact can be used to partition a virtual infrastructure
into separate data descriptions, each restricted to the resources that are under the control of the
provider receiving the description. Where a description must identify resources that are under the
control of another provider, they can do so using a reference. For example, a Link between Attach-
mentPoints may be shared by two infrastructure service providers, whereas each AttachmentPoint
is implemented by only one provider. Each provider receives a copy of the Link object in a data
description document, but only its own AttachmentPoint is described. The Link identifies the re-
mote AttachmentPoint using a reference. If the provider needs to obtain details about the remote
AttachmentPoint it can resolve the reference. The remote provider is able to control access to the
information.

The resolution process itself is described in Section 2.4.3.1. In CloNe we use references based on
the resource naming schemes of the provider interfaces, such as OCCI/OCNI. It is possible to use
different naming schemes for data objects accessed through different interfaces (identified by the
initial locator part of the URI). The Network of Information (NetInf) naming scheme described
in [18] is an alternative URI based scheme that can be used for data objects accessed through the
NetInf name resolution interface.

2.4 Architecture Layers

The layers of the architecture build on each others functionality from the bottom up. They are
described in that order in the following.

2.4.1 Resource Layer

Administrative
Domains

Resource Layer

R
es

o
u

rc
e

C
o

n
fi

g

Virtualised
infrastructure

Figure 2.8: The Resource Layer

The primary role operating in the resource layer is the administrator. The layer deals with
individual control of virtual resources within a single administrative domain. The virtual resources
can be individually identified, assigned certain properties, and have runtime status. They may also
have links to other virtual resources that are managed separately, for example, a virtual machine
might be linked to a virtual network and a storage volume.

SAIL Public 14

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

The correct operation of a virtual resource may depend on the status of resources it is linked to;
however, its management subsystem may not have visibility of the linked resource if it is managed
by a different subsystem. This level of coordination is outside the scope of the resource layer.

2.4.1.1 Resource Administration

The resource administration interfaces correspond to the management functions that are used
by the administrator role to create, manage and destroy virtual resources within an administrative
domain. In general these interfaces are the management interfaces of some virtualisation technology
such as the libvirt [19] virtual machine manager interface, a storage device controller or a network
administration interface.

The resource administration interfaces are implementation specific. They must provide informa-
tion about the underlying infrastructure including the network topology and technologies used, so
that the administrator can make a decision on how to manage the resources and what informa-
tion needs to be passed through these interfaces. Each interface (compute, storage or network)
therefore, takes specific configuration details from an administrator in order to configure resources
according to the infrastructure service user’s needs.

The following are examples of parameters and functions that could be present in these interfaces.

Compute Resource Interface

This interface provides technical capabilities similar to well-known interfaces like libvirt. At the
same time it could be augmented with the ability to provide more advanced capabilities than pure
virtual machine control (e.g. load balancing through virtual machine migration and distribution
of compute tasks onto various machines). This interface provides access and ability to invoke a
number of essential functions in handling resources such as:

• Creation/Deletion/Start/Suspend/Stop of VMs

• Compute service query and configuration to set performance target and express desired com-
pute service characteristics

• Selection of software such as OS and execution environment

Storage Resource Interface

The storage service interface can very much rely on standards such as Cloud Data Management
Interface (CDMI) and possibly on the de facto standard Amazon Simple Storage Service (S3)
to provide access to virtual storage spaces as well as physical storage. Compatibility with such
standard is essential as they are widely adopted in the cloud community. Additional needs emerge
when network providers also provide storage within the network nodes such as caching and even
storage of files, documents or multimedia files or data.

Network Resource Interface

Compute and Storage can be allocated and managed as cloud resources via well-defined web inter-
faces and Application Programming Interfaces (APIs) such as those mentioned above. These kinds
of interfaces and APIs are cloud computing and storage specific. What is missing today are the
cloud networking interfaces and APIs that CloNe intends to add or introduce.

The objective is to define these missing interfaces and APIs so cloud networking can be achieved
like traditional network configuration for Network Interface Cards (NICs), Virtual Local Area
Networks (VLANs), OpenFlow, OpenvSwitch, Dynamic Virtual Private Networks (VPNs). This

SAIL Public 15

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

interface will highly depend on the capabilities of the underlying network and existing network
management systems. It is expected that one should be able to configure parameters like bandwidth
and jitter. Mobility should be supported, as well as fault monitoring, and redundancy, depending
on the capabilities of the underlying network. One could also set triggers for monitoring of SLA
parameters.

The availability of specialised cloud networking interfaces and APIs will facilitate deployment,
configuration, management and supervision of networks as an integrated part of private and hybrid
cloud establishments.

2.4.2 Intra-Provider Layer

Coordinating operations
within providers

Infrastructure Service
Providers operate

independently

Intra-Provider Layer

In
fr

as
tr

u
ct

u
re

C
o

n
fi

g

Figure 2.9: The Intra-Provider Layer

The primary role in the intra-provider layer is the infrastructure service provider, which also
directs actions carried out in the administrator role at the resource layer. The intra-provider layer
deals with collective control of multiple virtual resources within a single administrative domain.
The links among these virtual resources determine the topology of the infrastructure and constrain
their combined management behaviour.

An intra-provider infrastructure is managed by a single administrative authority that has man-
agement rights over the underlying equipment and virtualisation technology. As a consequence,
within an intra-provider the administrative authority has full knowledge about the available virtual
resources and virtualisation capabilities at any time and can use that knowledge to manage all the
resources of a virtual infrastructure as a collection.

At this layer the mapping between the virtual infrastructure and the underlying equipment can
be determined. This mapping can take into account group allocation (all or nothing allocation of
a collection of virtual resources) and optimal placement (relative placement of virtual resources or
use of underlying infrastructure). For example a VM could be placed in a location with optimal
network performance relative to a given end user.

Some technology selections can be made at this layer. A virtual machine could be executed on
a choice of different servers with different memory sizes or chip sets giving different performance
trade-offs; a disk volume could be placed on local storage or network attached storage; a network
link could be mapped to an isolated VPN tunnel or an open shared network.

Optimal placement and technology selections will depend for the most part on private policies of

SAIL Public 16

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

the administrative authority for the domain. However, the properties of the virtual resources and
their links and the properties of the virtual infrastructure as a collection will influence the choices,
in some cases dictating minimal requirements for the virtual infrastructure.

The management and security functions that operate in the intra-provider layer have been studied
extensively in CloNe, with many examples reported in Chapter 4. Almost all the functions described
for management in Section 2.5 and for security in Section 2.6 exist in this layer.

2.4.3 Inter-Provider Layer

Coordinating operations
between peer providers

(Distributed Control Plane)

Infrastructure
Service Providers

In
fr

as
tr

u
ct

u
re

C
o

n
fi

g

Inter-Provider Layer

Figure 2.10: The Inter-Provider Layer

The primary role in the inter-provider layer is the infrastructure service provider, with multiple
providers interacting across their administrative boundaries as peer groups. The layer deals with
collective control of multiple virtual resources across multiple administrative domains. An inter-
provider infrastructure is the composition of multiple intra-provider infrastructures. An intra-
provider infrastructure may contain virtual resources that have links with virtual resources in
other intra-provider infrastructures, thus connecting the virtual infrastructures and determining
the topology of the inter-provider infrastructure.

The inter-provider layer shares information and performs coordination across the multiple providers,
which act autonomously at the intra-provider layer. The state of underlying equipment and vir-
tualisation capabilities are likely not fully shared beyond domain boundaries, but providers may
exchange limited information that they are willing to expose about their domain in order to facili-
tate resource optimisation decisions and to coordinate inter-provider links.

2.4.3.1 Distributed Control Plane

The Distributed Control Plane (DCP) describes a category of protocols, interfaces and control
operations within the inter-provider layer that enable two or more infrastructure service providers
to interact and exchange information. The following lists a minimal set of necessary interactions
that are part of the DCP. A more precise definition of the protocols and interfaces that constitute
the DCP is given in [3].

• Capability discovery: the process by which providers advertise their existence and their
capabilities with their peers.

SAIL Public 17

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

• Reference resolution: the process of converting an abstract representation of remote in-
formation (i.e. data model references described above in 2.3.3) to the actual information. As
an example, if a network link is to be established, information about the remote attachment
point for the link may be required. That information may be represented by a reference that
can be resolved through a resolution protocol to obtain the actual information. Reference
resolution is described in more detail in Section 5.1.3.3.

• Link negotiation: the process of two providers negotiating implementation specific configu-
ration details to establish a cross provider link between attachment points. A link negotiation
protocol that can handle multiple network technologies is detailed in [3] and described in Sec-
tion 5.2.2.

• Authorisation: the process of determining the right to access and manage virtual infras-
tructure. This is complicated by the chain created when users delegate access rights and
providers delegate implementation. A distributed authorisation mechanism is detailed in [3]
and described in Section 5.1.4.1.

The DCP is generally concerned with distributed coordination and global information access.
Communication between providers on DCP does not need to be synchronous. The specific proto-
cols and interfaces used may depend on the specific relationship between domains and technology
used. However, generic protocols may be employed to implement common coordination and com-
munication services.

2.4.4 Service Layer

In
fr

as
tr

u
ct

u
re

D
es

cr
ip

ti
o

n

Service Layer

Infrastructure Service
UsersInfrastructure

Description

Infrastructure
Service Providers

Deployed
resources

Figure 2.11: The Service Layer

The main roles operating in the service layer are the infrastructure service user and the in-
frastructure service provider. The tenant also has an important role in this layer as the root of
authorisation for an infrastructure service user to act.

The CloNe infrastructure service is implemented by a set of interfaces and functions that enable
the creation, monitoring and management of virtual infrastructures, including automatic delegation
and collaboration across providers.

SAIL Public 18

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

2.4.4.1 Tenant registration

Tenant registration refers to the process of a tenant establishing a business relationship with an
infrastructure service provider. This may be an automatic process, in which a tenant discovers a
provider’s capabilities and programmatically registers as a customer. Equally, it may be a manual
process. For example, a network operator and a data centre operator may enter into a mutual
business relationship, by which the network operator installs a physical network connection to a
data centre operator. One or both may register the other as a tenant of their services.

2.4.4.2 Infrastructure Service

The infrastructure service interface is implemented by each infrastructure service provider. Users
interact with a single provider to deploy and manage a virtual infrastructure under the authorisation
of a tenant of that provider.

Infrastructure service requests are performed using a high-level description language based on
the information model described above. Requests for virtual infrastructure need to be decomposed
into parts for delegation across multiple providers where appropriate. The decisions to delegate
are based on information about the capabilities of other providers at a level they are willing to
share, and detailed knowledge of the local provider capabilities, policies and business relationships.
If the provider decides to delegate infrastructure it does so acting in the role of an infrastructure
service user, generating a new request that it issues to another provider via its infrastructure service
interface. The provider is responsible for maintaining a mapping between the original request and
the new one delegated to the other provider, mediating further requests related to the delegated
resources through the infrastructure service interface, interpreting information reported back for
the original user to consume, and issuing appropriate access authorisation to allow the original user
to interact with the resulting virtual infrastructure.

Information that supports the decisions taken in the service layer originates from other layers.
Other providers share capability information through the inter-provider layer, local capabilities are
known through the intra-provider and resource layers. The infrastructure service user’s request
contains constraints that guide the decision process.

The objective is to allow the user to specify high-level goals in the form of system service level
agreements that will be automatically broken down into low level control actions. This language
should define service goals that cross the boundaries between different cloud providers. It should
also address functional and non-functional requirements of the users, which may be constraints
that end-user business processes may impose for example on process migration.

The goal translation performed at the service layer is performed in concert with management
functions at other layers as described in the management aspects in Section 2.5 and practical
examples are given in Chapter 4.

The infrastructure service requires the use of well-defined security modules, in order to satisfy its
security requirements, provided through user, operator and legal requirements, i.e. authentication,
auditing, confidentiality, integrity and assurance, besides others. Security goal translation handles
the realisation of security requirements on the underlying resources, with the help of external
modules, for example an auditing module and an access control policy module. This shall be
covered in the Section 2.6.

2.5 Management Aspects

The aim for the management architecture is to allow overall optimization of service provisioning and
maintenance by considering network and computing resources as a unified whole, operating across
a distributed resource pool using a common management framework. The management concept

SAIL Public 19

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

allows the infrastructure service user to request services on the basis of its current and recognized
infrastructure needs. The management concept enables configuration and deployment of optimal
and efficient solutions, as well as dynamic reconfiguration and compensation for deviations from
the agreed QoS-levels of requested services or for elastic variations of consumer demands during
the service lifetime.

This aim leads to several challenges concerning scalability, efficiency, and adaptability of the man-
agement functions under increasing network complexity. The challenges lie in developing concepts
and algorithms that can meet the technical, legal, and commercial requirements and ramifications
of CloNe. The five main challenges are listed below:

• The business model of CloNe allows rapid deployment of services. This leads to challenges
in developing efficient and fast algorithms for, e.g., optimal resource selection, performance
modelling, and service migration.

• Multi-tenancy leads to resource sharing which implies challenges for SLA compliance as re-
sources may suffer from starvation and result in performance degradation.

• Multi-tenancy together with delegation and volatile service provisioning (migration, multi-
provider) implies challenges for fault localization (root-cause analysis). This further affects
and challenges the optimization aspect of goal translation.

• Equipment heterogeneity and possible restrictions of access to underlying network information
lead to challenges for capability and resource discovery.

• The (geographically) distributed nature of infrastructure services leads to challenges in re-
source configuration due to possible jurisdictional differences (with respect to encryption and
data restrictions, for example) between parts of the same service.

Goal	
 Transla*on	

Resource	
 Management	
 Fault	
 Management	

Resource	

Alloca*on	

Resource	

Op*miza*on	

Resource	
 and	
 Performance	
 Monitoring	

Resources	

Resource	
 Control	

Delega*on	
 Decomposi*on	
 Op*miza*on	

Detec*on	
 &	

Localiza*on	

Performance	

analysis	

Goal	
 Transla*on	

Resource	
 Management	
 Fault	
 Management	

Resource	

Alloca*on	

Resource	

Op*miza*on	

Resource	
 and	
 Performance	
 Monitoring	

Resources	

Resource	
 Control	

Delega*on	
 Decomposi*on	
 Op*miza*on	

Detec*on	
 &	

Localiza*on	

Performance	

analysis	

Goal	
 Transla*on	

Resource	
 Management	
 Fault	
 Management	

Resource	

Alloca*on	

Resource	

Op*miza*on	

Resource	
 and	
 Performance	
 Monitoring	

Resources	

Resource	
 Control	

Delega*on	
 Decomposi*on	
 Op*miza*on	

Detec*on	
 &	

Localiza*on	

Performance	

analysis	

Goal	
 Transla*on	

Resource	
 Management	
 Fault	
 Management	

Resource	

Alloca*on	

Resource	

Op*miza*on	

Resource	
 and	
 Performance	
 Monitoring	

Resources	

Resource	
 Control	

Delega*on	
 Decomposi*on	
 Op*miza*on	

Detec*on	
 &	

Localiza*on	

Performance	

&	
 Root	
 Cause	

Analysis	

Figure 2.12: Management Concepts

SAIL Public 20

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

2.5.1 Management Architecture

The management architecture builds on five management concepts: goal translation (for mapping
requests to optimal virtual infrastructure provisions), resource management (for optimally mapping
virtual infrastructure to underlying equipment), fault management (for maintaining performance
levels through modelling and fault mitigation), resource and performance monitoring, and resource
control. Figure 2.12 gives a schematic view of the management concepts. The concepts are imple-
mented across the architectural layers by corresponding management functions. The management
functions together provide the necessary means for service request management, through commu-
nication and exchange between the functions. The functions and their interaction are described in
Chapters 4 and 5.

Goal Translation Concept

Goal translation is implemented both in the service and the inter-provider layers providing layer-
specific functionalities. Goal translation interfaces with the intra-provider layer for obtaining
provider capabilities, and with the resource layer for obtaining performance and resource monitor-
ing data and models, which are used in the process of selecting optimal infrastructure provisions.
For its operation in the intra-provider case, goal translation relies further on communication with
fault and resource management functions, while in the inter-provider case it communicates with
corresponding inter-provider functions.

The concept of goal translation facilitates the use of a high-level service specification language, in
which an infrastructure service user can request services according to its recognized needs (which,
could be merely in terms of system or service level constraints on the required performance). Such
high-level requests are translated into lower level goals. In the inter-provider case, the translation
amounts to supporting delegation and decomposition into goals that can be optimally matched by
the single provider components based on their capabilities. In the intra-provider case, the transla-
tion amounts to selecting optimal infrastructure solutions among candidate solutions provided by
resource management functionalities. In this case, the translation is based on performance models
provided by performance monitoring and modelling management functions. In the general case,
both for intra- and inter-providers, the translation may have to take several constraints into ac-
count simultaneously (including constraints originating from the business model of the provider as
well as from technologic or environmental considerations). Thus, optimality need not be uniquely
defined and may rather best be defined in terms of an equilibrium (e.g., Pareto optimality). The
performance of the selected solution is monitored with respect to the low-level goals (performance
objectives or subgoals). A failure to meet a low-level goal may lead to re-optimization of the
corresponding high-level goal in order to find alternative provisioning solutions.

The goal translation concept thus contributes to the robustness and resilience of service provi-
sioning by allowing uncertainty to be encoded in the service request and by isolating the tenant
from the actual implementation choices of the service.

Fault Management Concept

Fault management consists of a set of algorithms that operates in collaboration with other man-
agement functions in the intra-provider layer and the resource layer. Communication with the goal
translation and resource management functions takes place in the intra-provider layer. An integral
functionality of fault management is performance monitoring and analysis. This functionality can
be provided by dedicated resource and performance monitoring functions (residing in the resource
layer), but may also include implemented monitoring functionality specific to fault management
tasks.

SAIL Public 21

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

The cornerstones of the fault management concept are adaptive, scalable and effective algorithms
based on probabilistic management [20]. Algorithms following the fault management concepts are to
a high degree based on probabilistic approaches, providing information about the network behaviour
that can be used for prediction and maintenance. Fault management algorithms cover operation
within and across stacked service layers, and are typically designed for decentralized, in-network
operation. The fault management algorithms make use of distributed network monitoring and
performance models that gradually adjust to the variations in observed network behaviour, such
that up-to-date fault management information about the network state can be efficiently provided.
The fault management concept is aimed at enabling proactivity and resilience, which is crucial in
both resource management and goal translation, e.g., for the seamless re-allocation of resources
and maintenance of SLAs.

Resource Management Concept

Resource management functionality is implemented in the intra-provider layer. It communicates
with goal translation and fault management within the layer. It communicates via the resource
administration interface with resource control functions for conveying instructions for virtualisation
technology and low-level resource configuration (as described in Section 2.4.1.1). It may also obtain
information about the state of underlying equipment as well as monitoring data from resource and
performance monitoring functions via the resource administration interface.

The resource management concept provides dynamic localization and allocation of necessary re-
sources in an efficient and timely manner. Scalable and efficient resource scheduling mechanisms
enable fast location and prioritization of available resources at a given time, ensuring short reac-
tion times for virtual infrastructure creation and adaptation in order to minimize disruptions in
service operations. Mechanisms for quick adaptation for equipment joining and leaving the pool of
resources are essential for effective and dynamic allocation of resources. In large systems that may
span multiple providers controlled by individual stakeholders exposing more or less limited capa-
bilities and resource information, a homogeneous abstraction layer is required for flexible virtual
infrastructure management.

Resource Control Concept

Resource control functions reside primarily in the resource layer, where it communicates with
resource management in the intra-provider layer.

The concept encompasses the functionalities and protocols for virtualisation and configuration
of physical resource nodes. Among the items that need to be communicated from resource level
to resource management functions are capability models used in resource and capability discov-
ery services. The resource control functions receive configuration instructions from the resource
management functions.

Resource and Performance Monitoring Concept

The resource layer may implement low-level functionality for monitoring of resources and perfor-
mance, which are communicated to the management functions in the intra-provider layer. The
exact description of the functionalities provided is implementation dependent and may be specific
for certain purposes (e.g. fault management tasks).

2.5.2 Management Functions in the Intra-Provider Layer

The state, the configuration parameters, and the capabilities of the underlying equipment may be
assumed to be fully known to the intra-provider layer management functions. For resource manage-

SAIL Public 22

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

ment this implies that the range of infrastructure service solutions that can be provided depends
primarily on the current status of the equipment within the administrative domain. Similarly, fault
management operations take place mainly on per-domain basis. Note that even though the intra-
provider setting occurs in a single administrative domain, the physical infrastructure may span
several different administrative domains, thus calling for distributed resource, fault management
and performance monitoring algorithms.

In the intra-provider layer, goal translation uses (dynamically updated) performance models
for the underlying equipment to select an infrastructure provisioning among a set of potential
candidate solutions to provide an optimal service according to high-level service requests. The
service requestor’s constraints (so-called high-level goals) are translated into constraints on the
performance and configurations of resources at the resource layer (so-called low-level goals), via
the provided performance models. These low-level constraints are used as performance objectives
by the resource management function in its communication with the resource control functions. In
the intra-provider, the goal translation process can potentially find provisioning solutions that are
optimized with respect to specific organizational or corporate business goals and policies.

2.5.3 Management Functions in the Inter-Provider and Service Layers

The service layer implements goal translation, and depends on information provided from the
capability discovery and provider federation functions of the inter-provider layer. All these are
further described in Chapter 5.

The goal translation function’s primary concern is to decompose complex service requests into
service requests that can be posed to suitable providers taking part in the federated service pro-
visioning. This is done by matching the capabilities of the providers with the component requests
obtained by decomposition of the original request. The available capabilities depend both on the
joining peers and on the capacity declaration scheme of the federation. In turn, the capability
of each provider depends on the infrastructure services it can provide, which is determined by
its intra-provider layer management functions and the underlying equipment as described in the
previous subsection. The inter-provider federation function provides protocols for attaching and
detaching peers to the federation.

2.6 Security Aspects

The security architecture is designed to manage the current and future security challenges which
may affect the CloNe infrastructure. An initial list of security challenges was based upon a well-
defined and comprehensive security analysis covered in [21]. Moreover, design of the CloNe security
architecture and prototyping of security modules has further modified and concretized the list of
security challenges. Furthermore, the security challenges are not necessarily restricted by the use
case scenarios defined for the CloNe infrastructure [4].

These security challenges in turn lead to the formulation of security goals and requirements.
Security goals, with respect to the current deliverable, are considered as concrete security properties
derived from the CloNe architecture. On the other hand, security requirements are considered as
high-level security specifications that would be achieved by implementing a chosen set of security
goals. For example, isolation, a security requirement, shall require confidentiality, privacy and
integrity (security goals) for its implementation. The list of security requirements are described
in Section 2.6 and the list of security goals relevant for the CloNe infrastructure are described in
Section 2.6.

SAIL Public 23

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

Security requirements

The security requirements have been obtained from the component-wise security analysis and
list of security best practices from industry accepted sources, namely, CMMI, ENISA, and ITIL
[22, 23, 24]. The requirements have been modified with respect to the scope of the CloNe infrastruc-
ture. Furthermore, the security requirements have evolved during the design of the CloNe security
architecture and the prototyping of the CloNe security modules. This section, describes the se-
curity requirements relevant for the CloNe infrastructure and the corresponding security modules
required to attain the security requirements.

Information security: The offered services and user data reside in the CloNe infrastructure
and need to be protected from information leakage and misuse. Information security is achieved
by successful formulation and implementation of security policies. These security policies are set
and modified by the different CloNe entities.

Virtualisation management: CloNe requires an access control policy model, which enables
access delegation and control of virtual resources. An authorisation logic has been developed which
is capable of encoding individual delegations as access grants and using them to prove authorisation.

Isolation: In CloNe, the underlying physical infrastructure is shared by different tenants. Be-
sides the separation of communication and the separation done by a hypervisor, the CloNe man-
agement has to take care of complying with Service Level Agreement (SLA)s of all customers.

Misuse protection: Mechanisms for detecting misuse of the CloNe infrastructure need to be
devised and integrated into the overall security framework. The assurance and auditing module
described in Section 4.5.3 detects and protects against misuse of the CloNe infrastructure.

Identity management: The CloNe infrastructure requires a backbone identity management
framework to develop and manage identities and access control policies relevant for the different
tenants and cloud users. Moreover, the different entities involved in the architecture must be au-
thenticated, and their access to information and services should be verified against their permissible
access rights.

Security goals

The CloNe security architecture requires similar security goals as any other Software as a Ser-
vice (SaaS) or IaaS provisioning infrastructure, namely, availability, integrity, confidentiality, au-
thenticity, non-repudiation, and privacy.

Availability implies that any entity, whether external or internal, is not able to affect the
ability of a system to deliver services to its users in an unauthorised way. Availability is generally
a quantitative metric against measurable parameters (for e.g., number of users serviced in parallel,
network bandwidth, response time). In the context of security we focus on availability breaches
based on attacks. In the case of CloNe this means that no user without administrative privileges
on the CloNe infrastructure is able to impact the service being offered to the other users.

Integrity implies that any entity is not able to alter the data without prior authorisation; one
instantiation of this is that all modifications can be detected successfully after the alteration, for
example, using digital signature schemes. The integrity of communication with and inside the
infrastructure elements has to be realised, so that no man-in-the-middle attacker is able to alter
data that is sent to, from, or inside the cloud networking infrastructure.

Confidentiality implies that no one is able to read the data without prior authorisation. In
order to read the data, the users must possess the essential credentials, such as encryption keys,
as lack of credentials imply no access to the protected data. Similar to integrity, this entails
confidentiality of both, the data stored inside the CloNe infrastructure, as well as the data that is
transmitted during the communication between the CloNe entities.

Authenticity implies that a challenged entity can prove that their actual identity matches their

SAIL Public 24

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

published or advertised identity. Authenticity is a strict requirement for the CloNe infrastructure
in order to prove the identities of the communicating CloNe entities.

Non-Repudiation implies that any entity which has executed an action is not able to disclaim
the action. For CloNe this is strongly related to traceability, i.e., to verify the geographic location of
the virtual infrastructure and to verify whether it conforms to the agreed policies. Non-Repudiation
is also important for accounting, auditing, and assurance purposes.

Privacy implies that an entity has control over which aspects of its personal information it wants
to reveal, and to which entities. There are two primary mechanisms to enforce privacy, namely,
anonymity and pseudonyms. Anonymity enables an entity to hide its identity by using a set of
other identities (anonymity set), while pseudonyms enable the use of false names instead of real
names. Privacy is always a trade-off between the requirements of the service provider and the
cloud user. The service provider requires complete disclosure of the information that is required to
provide a service. On the other hand, the cloud user wants to share as little personal information
as possible.

2.6.1 Security Architecture

This section describes the CloNe security architecture which integrates the security requirements
and goals described above. Previous versions of the security architecture were described in [2] and
[25]. The security architecture provides quantifiable security levels within the CloNe infrastructure.
This ensures that all the CloNe entities obtain a better view of real-time security levels of the service
provisioning infrastructure.

The security goal translation function forms the backbone of the CloNe security architecture.
The security goal translation extends the goal translation function described in Section 4.2.2 by
adding security-specific functionalities. It accepts service requests, monitoring results, and topology
information, and generates constraints on parameters, which are characterized with respect to the
underlying resources. It also accepts a security control goal (also termed as a security objective)
from the owner/issuer of the goal at a higher level in the service hierarchy, and translates it into
sub-goals (which are further propagated to the lower levels in the service hierarchy), or parameters
that need to be further constrained with respect to specific resources.

The security goal translation function also accepts inputs from the resource management func-
tion (for status and capabilities of the resources) and the fault management or resource monitoring
functions (for the performance measurement of the resources). The security goal translation func-
tion interacts with additional security modules, in order to decompose the security relevant user
requests into pareto-optimal resource specifications. These security modules include an identity
management module, access control policy module, assurance and auditing module, and a Security
Information and Event Management (SIEM) based intrusion detection module which uses genetic
algorithm based feature selection algorithm.

These security modules can be categorized into two groups, namely, modules interacting in
an intra-provider or inter-provider setting. Sections 2.6.2 and 2.6.3 provide an overview of the
working of the security modules along with cross-references to places in this document where they
are detailed.

2.6.2 Security Functions in the Intra-Provider Layer

This section provides an overview of the interaction of security modules in a intra-provider setting.
The modules described below include identity management module, access control policy module,
assurance and auditing module, and a SIEM based intrusion detection module.

Identity management module: The identity management module is responsible for manag-
ing identities and controlling access to the CloNe infrastructure. The identity management module

SAIL Public 25

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

enables identity provisioning and authentication of the infrastructure service users, infrastructure
service providers, and the virtual resources. Whenever a CloNe entity (infrastructure service user)
wants to request a virtual resource from another entity (infrastructure service user or infrastructure
service provider), it invokes the identity management module. The identity management module
allows the requesting entity to automatically provision and de-provision user, provider, or resource
accounts and maintains a central registry for storing the respective credentials. The identity man-
agement module uses Service Provisioning Markup Language (SPML) [26] for automatic identity
provisioning and interoperation of resource provisioning requests.

Once user, provider, or resource identities have been provisioned, the identity management mod-
ule allows communicating entities to authenticate each other. Authentication involves the validation
or confirmation that credentials supplied by a CloNe entity are valid. The identity management
module utilizes Security Assertion Markup Language (SAML) [27] in combination with standard
web encryption such as Secure Socket Layer (SSL) in order to set and validate credentials. The
details of the identity management module and its interaction scenarios are described in Section
4.5.4.

Access control policy module The access control module determines whether an infrastructure
service user is permitted to access a specific resource. The resource owner (infrastructure service
user or infrastructure service provider) defines an access policy that specifies which users can access
the resource. Based on the access policy, user access on a resource is validated. An authorisation
logic has been developed which is capable of encoding individual delegations as grants and using
them to prove authorisation. The access control policy module works in tandem with the identity
management module and enables fine-grained access control of the virtual resources. The details
of the access control policy module and its interaction scenarios are described in Section 4.5.5.

Assurance and auditing module The assurance and auditing module is composed of two func-
tions, namely, an assurance function which assures whether the deployed infrastructure matches
the security requirements specified by the CloNe entities, and a Trusted Platform Module (TPM)
based auditing function [28] which attests the geographic location of the physical resources provi-
sioned to the infrastructure service user. The assurance function is built on top of the CloudAudit
[29] assurance interface, while the auditing function uses XEN as hypervisor and develops a new
security module for attesting the geographic location. The details of the assurance and auditing
module are described in Section 4.5.3.

SIEM based intrusion detection module The SIEM based intrusion detection module is
used to detect and provide real-time analysis of security alerts generated by the provisioning in-
frastructure. The intrusion detection system used in the module utilizes a new genetic algorithm
based pre-processing algorithm and a Support Vector Machine (SVM) for detecting and classifying
malware with a low false alarm rate. The SIEM based intrusion detection module supports the
security goal translation function by providing it a real-time evaluation of the security level of the
CloNe infrastructure. The details of the module are described in Section 4.5.1.

2.6.3 Security Functions in the Inter-Provider Layer

This section provides an overview of the working of the access control policy module in an inter-
provider setting. The access control policy module enables an infrastructure service provider to
delegate the implementation of its resources to other infrastructure service providers hosted outside
its administrative domain. Furthermore, an infrastructure service user could himself be acting as
a provider to other infrastructure service users, or infrastructure service providers. The detailed
delegation scenarios across multiple administrative domains will be covered in Section 5.1.4.1.

SAIL Public 26

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

3 Elaboration of the Flash Network Slice
Concept

The capability to materialize the CloNe architecture in a wide range of present and future network
technologies has been identified as a basic CloNe requirement [2]. This chapter addresses the
network aspects of the CloNe architecture by analysing how the main components and building
blocks can materialize the concept of FNS and characterizing the main service types. It also analyses
how those basic building blocks can be mapped, in practice, into the most widely deployed WAN
service models by service providers.

Section 3.1 identifies a set of basic CloNe architectural constraints and explains the importance of
separating technology dependent and independent functions to enable the deployment of CloNe over
different present and future technologies. Section 3.2 identifies the basic set of common building
blocks and respective interfaces that are applicable across multiple network technologies. Section 3.3
describes how the basic FNS components can be mapped into VXDL, OCNI and Link Negotia-
tion Protocol (LNP) protocols used by CloNe. Section 3.4 analyses how those building blocks
map into concrete examples of network technologies, particularly a representative set of widely
deployed network virtualisation models, i.e. IP/MPLS-based layer 2 (L2) and layer 3 (L3) VPNs.
Finally, Section 3.5 shows an example including multiple administrative domains and multiple FNS
components, both L2 and L3-based.

3.1 Architectural Constraints

Two basic CloNe architectural constraints are future-proofness and compatibility with the wide
range of currently deployed network technologies [2]. These constraints are essential to enable
technology migration and facilitate interoperability. Both require CloNe to be agnostic in relation
to specific characteristics of the underlying network infrastructure. This requirement implies a clear
separation between technology-independent and technology-dependent functions.

Traditionally, in a Cloud Networking environment, network domains fall in two basic groups: data
centres (DC) and WAN. Usually, these two types of network domains are managed and administered
by separate entities and quite different approaches are used in relation to aspects such as network
protocols, resource management mechanisms, fault management and service provisioning tools.
Furthermore, for both data centre and WAN specific domains, a wide range of network technologies
and variants is available. Given the above-mentioned heterogeneity of network technologies, an
obvious challenge is how to build a generic CloNe architecture that can be applicable regardless of
the specific characteristics of the underlying network infrastructure.

A clear separation between technology-independent and technology-dependent functions, as shown
in Figure 3.1, facilitates the achievement of this goal. The idea is basically that different technolo-
gies can be incorporated in the architecture simply by creating modules (represented in the figure
by the blue and red arrows) adapted to the specific characteristics of each technology. This separa-
tion enables important advantages: on the one hand, CloNe is able to make use of a high number of
existing network technologies, without the need to create specific ”ad-hoc” solutions; on the other
hand, any new technology can be accommodated simply by building the corresponding module;
finally, by using common reference points, deployment of new technology can be backward compati-
ble and interoperable with legacy technologies, i.e., a massive upgrade or replacement of equipment

SAIL Public 27

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

is not required (no flag day). The combination of these factors should have a significantly positive
impact to facilitate migration, early adoption and incremental deployment.

The WAN segment deserves a special attention in this chapter, as it provides the ”glue” that
binds all network components. In particular, well established network service models, namely L2
and L3 VPNs, are analysed (see Section 3.4).

Figure 3.1: Separation of technology-independent and technology-dependent functions

3.2 Basic Components of the FNS

Once a request is made by the infrastructure service user by means of VXDL, the infrastructure
service provider may decompose it and forward its multiple parts (possibly including one or multiple
WAN domains) to different providers. Typically, the WAN part will be materialized as an instance
of a network service, or FNS, which may take multiple forms.

The scenario represented in Figure 3.2 includes three basic network domains: customer private
network, WAN and data centre. For the purposes of analysing the main networking building blocks
in Cloud-based services, the characteristics of the customer private network play a relatively minor
role and can be seen as part of the WAN managed service (e.g. L2 or L3 VPN).

Figure 3.2 illustrates the case where infrastructure of two customers (1 and 2, identified by two
different colours) is distributed across private network and Data Centres DC1, DC2 and DC3.
The basic components, which are identified below, are illustrated in the figure. The WAN service,
in several possible forms, constitutes the glue that binds together DCs and customer premises.
Therefore, the establishment of an FNS strongly relies on the underlying technology deployed in
the WAN.

• WAN FNS: provides interconnection of remote customer premises, as well as between cus-
tomer premises and data centres, or between data centres. A WAN FNS can be accessed
through a number of points of presence, or ports in CloNe terminology, which are typically
materialized by an edge device. The set of ports define the geographical footprint of the FNS
(e.g. regional, national, global). A WAN service must be capable of supporting multiple
customer service instances and guarantee isolation among them. Depending on the service
type, this can be materialized in one of multiple forms, e.g. virtual router, virtual switch,
VRF (Virtual Routing Forwarding), VSI (Virtual Switching Instance). From the customer

SAIL Public 28

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

Figure 3.2: Network model building blocks

point of view this service instance is typically seen as a dedicated L2 or L3 device (depending
on the type of service offered by the service provider).

• Data Centre Network: Several design approaches can be used in the data centre. In the case
of Cloud Service Providers, multi-tenancy is a basic requirement, which implies that some
form of network virtualisation (e.g., 802.1q (VLAN), Q-in-Q, VXLAN) is needed. A data
centre is connected to the outside world by a number of ports, which basically correspond
to a demarcation point between Data Centre and WAN infrastructure. At the port level,
adaptation is usually performed between DC and WAN domains; a DC may be connected
to one or more WAN ports (e.g. for redundancy reasons). A data centre port must support
multiple isolated service instances (one per tenant) to allow multi-tenancy, which presupposes
that some form of network virtualisation (e.g., VLAN) is used inside the DC.

• DC/WAN link: corresponds to the connection between the Data Centre and the WAN FNS.
In order to enable DC multi-tenancy and guarantee isolation between different customers,
multiple virtual links are typically multiplexed over this physical link. There can be more
than one connection between a DC and a WAN service provider and a single DC may be
connected to multiple WAN service providers.

Figure 3.3 illustrates this from the perspective of one data centre. In this example there are
three links, two going to WAN 1 and the third going to WAN 2. In the figure, these links
are referred to as service provider logical links (SPLL). The SPLLs are split into a number of
tenant logical links (TLL), each illustrated with a unique colour.

By agreeing in advance on a unique SPLL identifier for each SPLL, the DC and WAN service
providers can negotiate which SPLL to use when a FNS shall be instantiated on-demand
for a certain tenant. As part of such a negotiation the TLL will be created and given a
TLL identifier for later reference (e.g., if its properties should be changed). Hence there is a
one-to-one mapping between a certain FNS and a TLL. The LNP was designed in order to
automatically perform this negotiation.

SAIL Public 29

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

• WAN/WAN link: link between two WAN providers. Typically each WAN/WAN link carries
multiple customer virtual links. Identification of virtual links must be negotiated between
peer network providers. LNP can be used for negotiation in this context as well. A detailed
discussion of inter-provider WAN/WAN issues is for further study.

DC	
 WAN	
 1	

WAN	
 	
 2	

	

	

Tenant	
 logical	
 link	

Service	
 provider	
 logical	
 link	

Figure 3.3: The DC/WAN interface for tenant isolation.

3.3 Mapping FNS components to CloNe protocols

The purpose of this section is to show how the basic FNS components are mapped into the CloNe
protocols. In this section only a general overview is provided. Further details, as well as information
on prototype implementation, can be found in [3].

3.3.1 VXDL and OCNI

VXDL and OCNI represent two emerging standards in the cloud networking space that we are
actively evolving as part of CloNe. Both are capable of modelling the FNS concept.

VXDL has high-level representation of both the virtual infrastructure resources and the con-
straints attached to them. Originally targeted at network description, it now includes complete
infrastructure description. It can be used to describe goals, objectives and time lines, suitable as
input for driving the inference of concrete infrastructure configurations.

OCNI is an extension to OCCI, an existing cloud interface standard. In contrast to VXDL, its
origins lie in cloud computing and the OCNI extension represents an improvement in its treatment
of virtual networks. It can be implemented directly on several existing infrastructure managers,
including OpenNebula and OpenStack, making it suitable for describing the concrete infrastructure
configurations.

These standards overlap in application but also demonstrate different strengths. Table 3.1 shows
a mapping between our infrastructure concepts and classes in the VXDL and OCNI data models.

We use both in our prototyping: VXDL for high level, goal based, descriptions that are inter-
preted and translated to OCNI for concrete input to infrastructure managers.

SAIL Public 30

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

Table 3.1: Mapping CloNe concepts to VXDL and OCNI

Concept OCNI VXDL
Resource Resource vResource
Compute Compute vNode
Storage Storage vStorage
FNS FNS vRouter
StorageInterface StorageLink Defined by a vlink be-

tween the vStorage and a
vNode

NetworkInterface NetworkInterface Defined by the vLink
Infrastructure Resource + Infrastructure

Mixin
virtualInfrastructure

Infrastructure Service
Provider

Resource + Infrastructure
Service provider Mixin

A vAccessPoint connect-
ing two virtualInfrastruc-
tures

Port Network + Port mixin Defined through the vLink
Link NetNetLink vLink
RemoteAttachment Port + RemoteAttache-

ment Mixin
Could be any vResource

NetworkConstraint NetworkConstraint Mixin The specification of a net-
work is done as vLinks,
vRouters

NetworkFunction Port + NetworkFunction
Mixin

The specialization of a
vAccessPoint, a vRouter

3.3.2 Inter-Provider Coordination in CloNe: DCP

The DCPs LNP, defined in the prototyping deliverable [3], is responsible for the coupling of different
network managed services. In other words, and looking at Figure 3.2, the protocol is responsible for
the establishment of, for example, the virtual links between WAN1 and WAN2 and WAN1 and DC1
for both costumers. This coupling may be materialized through different network technologies (L2
or L3), such as VLANs, Internet Protocol Security (IPsec), Generic Routing Encapsulation (GRE)
or MACinMAC, requiring the exchange of information between the involved providers to agree on
specific configurations.

The LNP is a technology-independent protocol in the sense that it provides the means to enable
the technology-dependent information exchange independently of the technology. The technology-
dependent information is embedded in the encap scheme parameter of the LNP information struc-
ture. The information carried within the encap scheme is divided in two parts, the encap type
and the attributes. The former identifies the network technology (i.e. encapsulation scheme) (e.g.
VLAN) and the latter carries the specific configurations/attributes (e.g. VLAN id) that need to
be exchange depending on the technology. Table 3.2 presents a mapping of possible network tech-
nologies with the information carried within the LNP. For a deeper understanding of the LNP the
reader is advised to consult [3].

3.4 Materializing FNS in the WAN

The ability to match the dynamism and elasticity of the Cloud is a basic requirement of the
network infrastructure to build Cloud services and applications. The concept of FNS is expected to
address this requirement by enabling the automatic establishment of network resources in a time

SAIL Public 31

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

Table 3.2: Link Negotiation Protocol: technology dependent information

[gray]0.9Technology [gray]0.9encap type [gray]0.9attributes
VLAN VLAN vlan id
GRE GRE tunnel source, tunnel destination, tunnel key

IPsec
IPSEC tunnel source, tunnel destination, encryption type, hash type,

authentication method, group, transform-set, emphlifetime

frame comparable with existing virtual infrastructure computing and storage resources. OpenFlow
and SDN-based technologies have recently emerged as promising solutions to handle this kind of
requirements by fully decoupling the control and management plane from the data plane. However,
in the foreseeable future, access to cloud by most enterprise networks will likely be based on managed
WAN services such as L2 or L3 VPNs, which at the moment lack dynamic and elastic properties
of cloud services, as they were tailored for relatively static networks and were not conceived to
cope with such requirements as on-demand provisioning, elasticity and resource mobility. In the
long term, novel solutions enabling more dynamic control of network resources, as well as better
integration with service and application requirements are likely to gain wide acceptance. However,
given the huge installed base of legacy technology, a significant change is not expected to take place
soon. It is clear that L2 and L3 VPNs will continue to be the basis of FNS in the WAN in the
foreseeable future. This section addresses the issue of how the FNS concept can be materialized by
the currently dominant models for enterprise services, namely L2 and L3 VPNs.

In the network reference model of the CloNe architecture, the DC (network) infrastructure and
WAN infrastructure services expose well familiar forwarding functionality of Ethernet frames or IP
packets towards the cloud tenants. Request of these services is done using a technology independent
northbound RESTful interface typical of cloud infrastructure services. For instantiation of the
infrastructure service, a technology dependent interface is used.

Usually the taxonomy for WAN network services is based on the OSI layer used to build it, which
basically leads to a division of layer 3 and layer 2 service types. The most widespread model of
layer 3 services is BGP/MPLS IP VPN (as per RFC 4364 [30]). As for layer 2 services a wider
range of variants exist. The Metro Ethernet Forum has defined two basic types for Ethernet-based
services: Ethernet Line (E-line, also known as Virtual Leased Line) and Ethernet LAN (E-LAN,
or Virtual Private LAN Service, VPLS, in IETF terminology) [31][32][33]. A brief description of
the three basic service models is provided below.

In a layer 2 FNS, a network interface may materialize as a physical interface (i.e., an Ethernet
card), a virtual one (such as those associated with virtual machines) or a logical interface typically
associated with IPSec, GRE and similar tunnels or aggregated physical interfaces. A port may
attached to a RemoteAttachment, which is the local endpoint of layer 2 WAN communication
service. The establishment of a RemoteAttachment can be done statically in advance or dynamically
on-demand. In the latter case, the DCP plays a central role, as elaborated in Section 3.3.2.

The L3 FNS provides a routing and forwarding function that can be associated with one or several
L2 FNS. It can also be associated with the local and tenant specific attachment point of a layer
3 WAN communication service (see further Section 3.2). Analogous to L2 case, such attachment
points can be established statically in advance or dynamically on-demand. Again, in the latter case
DCP plays a key role.

In the following, the materialization of the FNS concept, based on some of the most widespread
models of L2 and L3 network services, is presented.

• IP VPN (L3VPN): each instance of the service corresponds to a private IP network. Multiple
private IP networks share a common infrastructure, potentially using overlapping IP address
spaces. Each provider edge router typically contains one VRF (Virtual Routing Forwarding)

SAIL Public 32

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

per VPN, which can be seen as a VPN-specific IP routing table and corresponds to the
basic service instances. If a L3VPN is used to interconnect DCs, or connect customers to
private subnets inside DCs, multiple service instances of some form (e.g. VRF-lite) should be
configured at the edge node of the DC to segregate traffic belonging to different customers.
The customer subnet inside the data centre can be seen as an extension of the customer private
network. Because the service is based on layer 3 protocols, and the DC-WAN interface is L3-
based, any L2-specific information in this interface (e.g. VLAN ID) has local meaning only.
The IETF specification can be found in [30].

Figure 3.4: Layer 3 VPN

• Virtual Leased Line (VLL): is a layer 2 service, functionally equivalent to a point-to-point
Ethernet Virtual Connection, or a TDM private line. Optionally, service multiplexing may be
provided, in which case more than one VLL service instance is offered on the same customer
physical interface. Customer VLAN tags may optionally be preserved. Figure 3.5 illustrates
the case where two customer private networks are connected to a data centre (other scenarios
making use of a VLL service, e.g. data centre interconnection, could be considered as well).
Since this is a L2-based service, L2-specific information such as VLAN ID may, or may not
(depending on the service characteristics), be preserved across the WAN [33].

Figure 3.5: Virtual Leased Line

• Virtual Private LAN Service (VPLS): provides multipoint connectivity between two or more
sites (e.g. DC, customer private site) and emulates LAN service across a WAN. The service

SAIL Public 33

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

is supposed to mimic the behaviour of an Ethernet bridge, including dynamic MAC address
learning, flooding and support of Spanning Tree Protocol, which implies a limited scalability
of the service (e.g. number of participating MAC addresses). In the example illustrated in
Figure 3.6 an operator provides two instances of the VPLS service. The VPLS service, in
two different flavours, has been specified by IETF [34] [35]. An alternative term to designate
essentially the same concept, proposed by the Metro Ethernet Forum, is E-LAN [33].

Figure 3.6: VPLS (E-LAN)

Table 3.3 summarizes how the basic components identified in Section 3.2 can be mapped into
these network service models.

3.5 Virtual Infrastructure Example

In most practical Cloud Networking scenarios, end-to-end connectivity is provided by multiple
FNSs, based on different virtual network domains, possibly built on different technologies and
protocol layers. Figure 3.7 exemplifies a virtual infrastructure composed of three cloud data centres
DC1, DC2, and, DC3, along with two wide area networks WAN1 and WAN2, all of which are capable
of delivering FNS services. The Internet is also shown, in the lower right part of the figure.

On the left side of the figure, it can be seen that in DC1, the tenant’s virtual infrastructure
consists of two virtual L2 FNSs to which one VM and two VMs are attached, respectively. The
layer 2 virtual network that corresponds to the L2 FNS with only one VM in DC1 spans across
to DC2 using a FNS provided by WAN1. There, two more VMs are attached to the same virtual
layer 2 network domain. Thus, a single layer 2 domain is composed of three different FNSs located
in DC1, WAN1 and DC2.

In DC3 there are two more L2 FNSs, one attaching two VMs and the other only one VM.
Between VMs on the same virtual L2 FNS, IP packets can be exchanged without the need of
routing functionality.

The connection between different FNSs is provided by tenant-specific logical links (TLL, as
defined in Section 3.2). In the example illustrated in Figure 3.7, the L3 FNS in DC1 connects to
the L3 FNS in the WAN via a TLL assigned to the tenant, which in turn provides connectivity
to the left-hand side L3 FNS in DC3 via a second TLL. That L3 FNS, in turn, is connected to
one of the L2 networks in DC3. Assuming that appropriate routing entries have been injected in
all involved L3 FNSs, this means that VMs attached to different L2 FNSs in DC1 and DC3 can
communicate to each other.

DC3 also contains a L3 FNS with Network Address Translation (NAT) capability. Through that
L3 FNS VMs can reach the Internet, and all IP packets originated by those VMs will enter the

SAIL Public 34

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

Table 3.3: Components, relation to CloNe architecture and mapping to standard network services

Component Relation to CloNe L3VPN Virtual Leased
Line

VPLS

FNS / WAN
service

Service provided by
network operator, re-
quested by OCNI at
provisioning time

IP/MPLS VPN
(RFC 4364)

VLL/Pseudo-Wire
(RFC 3985)

VPLS (RFCs 4761,
4762)

WAN Port WAN infrastructure
ingress point, requires
(re)configuration
whenever a new ser-
vice request by OCNI
is to be enforced e.g.,
create a new customer
service instance (e.g.
new VRF, in the case
of L3VPN)

Located at edge
router support-
ing L3VPN PE
functionality; asso-
ciated with VRF

Located at edge
router as Pseudo-
Wire endpoint

Located at edge
router support-
ing VPLS PE
functionality

Data Centre
Port

To be reconfigured per
customer request (by
means of VXDL) at
service provisioning
time

Tenant traffic iso-
lation by means of
virtual router, VRF
lite

Some form of
network virtualisa-
tion/encapsulation
(e.g. 802.1q, QinQ,
MACinMAC,
MPLS, L2TP,
GRE)

Some form of
network virtualisa-
tion/encapsulation
(e.g. 802.1q, QinQ,
MACinMAC,
MPLS, L2TP,
GRE)

Customer
service in-
stance at
WAN Port

Created per customer
request (on WAN side)
at service provisioning
time; specific param-
eters (e.g. IP ad-
dresses) are negotiated
by DCP/LNP

Virtual Routing
Forwarding (VRF)

Pseudo-Wire end-
point

Virtual Switch In-
stance (VSI)

DC / WAN
logical link

Specific characteristics
(e.g. encapsulation
type) negotiated by
DCP/LNP

IP addresses, Rout-
ing protocol, L2
Encapsulation type
(e.g. 802.1q, QinQ,
MACinMAC,
MPLS, L2TP,
GRE)

Encapsulation type
(e.g. 802.1q, QinQ,
MACinMAC, GRE,
MPLS), Encapsula-
tion ID

Encapsulation type
(e.g. 802.1q, QinQ,
MACinMAC, GRE,
MPLS), Encapsula-
tion ID

WAN /
WAN logical
link

Specific character-
istics negotiated by
DCP/LNP

Several options
available (specified
in RFC4364)

Inter-AS PW Inter-AS Tunnel

(Typical)
Constraints

Requested by cus-
tomer on-demand or
statically defined by
provider

Access bandwidth,
Routing protocol
(PE-CE), maxi-
mum delay, jitter,
packet loss, fire-
wall rules, packet
classification rules

Bandwidth pro-
file (e.g. CIR,
EIR, CBS), service
multiplexing, max-
imum delay, jitter,
packet loss

Bandwidth profile
(e.g. CIR, EIR,
CBS), Maximum
number of MAC
addresses, service
multiplexing, max-
imum delay, jitter,
packet loss

SAIL Public 35

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

L2
L3

L2

VM

VM

L3VPN “CE”

L2

L2

VM

DC1

DC2

WAN 1

L2

WAN 2

L2

VM

DC3

INTERNET

L3

L2

L3

L3
VM

VM

VM

L3VPN “CE”

L3

IPSec
end-point

Internet

L3VPN “PE”

L3VPN “PE”

-
-

-
-

L2 attachment point

L3 attachment point

Tenant logical link

Figure 3.7: A complex virtual infrastructure for one tenant with multiple FNSs

Internet with NATed source IP address. In DC2, an L3 FNS with one of its two attachment points
attached to a local IPSec tunnel end point can be seen. It means that packets routed by the L3
FNS to that destination will be injected into that IPSec tunnel and will traverse the Internet to
some remote destination (not shown in the figure).

SAIL Public 36

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

4 Elaboration of the Intra-Provider Layer

This chapter focuses on the CloNe management and security architectures with respect to services
implemented within a single provider. In particular, the chapter presents a number of implemented
approaches, toward addressing specific management and security challenges that are significant for
meeting the requirements, and for realizing the vision of CloNe. As management of inter-provider
virtual infrastructures to a great extent is done through management of its single provider virtual
infrastructure components, the material presented in this chapter has bearing also on the inter-
provider chapter (Chapter 5).

Recall from Chapter 2 that an intra-provider infrastructure is a number of virtual resources man-
aged collectively within a single administrative domain, where a single administrative authority has
management rights over the underlying equipment and virtualization technology. The management
of an intra-provider infrastructure is divided into four main tasks. The first task (goal translation)
is to map service requests to optimal resource provisioning solutions, i.e., an optimal selection of
virtual infrastructure provisions. The second task (resource management) is to define the mapping
between such virtual infrastructure provisions and the underlying equipment. The third task (fault
management) is to ensure stability with respect to SLAs and performance by mitigation of faults
and degradations through detection and localization of anomalous behaviour. The fourth task
(security management) concerns ensuring that the infrastructure is provided according to security
and privacy requirements. The first three of these tasks have been addressed in the management
task of WPD, while the fourth task has been addressed in the security task of WPD.

The four tasks rely on supporting services, including communication, resource monitoring, per-
formance and resource modelling, and resource controllers. In particular, the functions performing
the tasks within the intra-provider layer rely on communication with the other architecture layers.
For obtaining performance and resource monitoring data, as well as for controlling the underlying
equipment, the management functions connect to the resource administration interface. In particu-
lar, the resource management functions may rely on status and capability information provided via
the resource administration interface. For receiving service requests, the goal translation function
needs to interface with the service and inter-provider layers. While monitoring functionalities may
be implemented in the resource layer, it is not excluded that intra-provider management functions
implement monitoring functionalities that are specific to their operations. For example, fault man-
agement may build statistical performance models through active probing, obtaining monitoring
data that not necessarily is provided by the resource layer functionalities.

4.1 Management Functions—Operations and Interactions

The primary functions in the intra-provider domain implement the concepts of goal translation,
fault management, and resource management. These functions are called goal translation function
(GT), fault management function (FM), and resource management function (RM). Each function
consists of several blocks, together providing the necessary functionalities for intra-provider man-
agement. The exact configuration of functional blocks is implementation dependent and it is not
crucial at this level of description to fix these implementation considerations. The management
functions can be instantiated in any virtual instance of an infrastructure service, given that the
infrastructure service provider implements it according to its specific management purposes and

SAIL Public 37

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

with respect to the available infrastructure.
This section briefly describes the functions with respect to their functional blocks and their

communication and interaction behaviour, both with other management functions and with other
parts of intra-provider infrastructure. For more detailed descriptions, please refer to the earlier
version of the management architecture [2].

Goal translation function

GT consists of four blocks: high-level objectives block, optimization block, monitoring block, and low-
level objectives block. The high-level objectives block receives and processes high-level infrastructure
and security objectives from the infrastructure service interface. The optimization block consists of
a multi-objective optimization algorithm, transforming high-level objectives into performance ob-
jectives, which in turn are stored in the low-level objectives block. The monitoring block receives
monitoring data from the monitoring functions (as well as possibly richer performance models from
FM) relevant for determining whether the performance objectives are fulfilled. Observe that the
monitoring block not necessarily implements full resource and performance monitoring function-
ality. The monitoring block may rather merely store information about which monitoring data is
relevant for determining whether a certain low-level objective is breached, and rely on monitoring
data from dedicated management functions.

Apart from service requests, GT needs as input, for each service request, a set of candidate
provisioning solutions, and relevant, up-to-date, performance models to use for the optimization
procedure. The provisioning solutions selected through the optimization process are communicated,
as output, as performance objectives for the resource manager.

GT operates in two processes: the optimization process and the monitoring process. The opti-
mization process continuously tries to find optimal resource provisioning solutions to goals that are
yet to be fulfilled (which may be new service requests or violated goals that have been triggered
for re-optimization). The monitoring process keeps track of the low-level goals and either trig-
gers re-optimization of high-level goals or declares a high-level goal fulfilled, depending on whether
corresponding low-level goals are fulfilled.

Fault management function

The responsibility of the FM function is to monitor the behaviour or state of resources, and re-
port disturbances to goal translation, resource management, security mechanisms, infrastructure
service users, or infrastructure service providers in collaboration. The FM function consists of
two functional blocks — ”Performance and root cause analysis” (PRA) block and the ”Detection
and localization” (DL) block. Algorithms that map to the functional blocks operate using ob-
served network measurements and logged events as input, and may receive and process data from
the monitoring tools implemented in the Resource and Performance Monitoring block (RPM), for
evaluation of the resource behaviour (based on measurement requests). Measurement requests to
specific resources can be performed through the management interfaces. The FM function provides
1) disturbance information, such as detected and localized faults, anomalies, and changes in the
observed behaviour of monitored resources; 2) potential root-causes; and 3) probabilistic models
and analysis of the long-term behaviour of the monitored resources, in terms of e.g. failures and
correlated events. FM information about disturbances and changes can be communicated to RM
and GT for fault handling, re-configuration purposes or when a service is initiated and deployed.
The models created for FM analysis might also be useful for RM and GT operations in addition
to RPM data (e.g. for resource allocation). FM algorithms can implement functionalities mapped
to either in PRA, DL or both, and can be based on information exchanges between these blocks.

SAIL Public 38

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

An FM-algorithm might use already existing performance monitoring tools and models from the
RPM, or might implement algorithms in both FM and RPM for specific FM purposes.

The overall operation of the FM function can be described in terms of four main processes:
FM monitoring/modelling and detection, fault isolation, root cause analysis, and fault handling
processes. The first process is triggered by the RM process, whenever resources is allocated and
configured. The FM algorithms are configured according to specification by the RM. The FM
algorithms continuously process monitoring data and measurements over the equipment in each
virtual infrastructure in a decentralized manner, running on the virtual resources. The models
obtained in this process are then used for detection of faults and performance degradations, for
adaptation of FM algorithmic behaviour, or as richer input to other management functions [20].
The fault isolation process is triggered when failure or performance degradation is detected for
a virtual resource within a virtual infrastructure based on processed measurements. The fault is
localized in a distributed and collaborative manner within the virtual infrastructure. The root
cause analysis process is triggered when a fault has been localized. As the cause can originate
from some other parts of the cloud, the root cause analysis process correlates events from virtual
infrastructures running on shared resources for the purpose of analysing the order of events and
isolating the true origin of the fault. The fault handling process is triggered when the root cause
has been determined. In collaboration with the RM function, actions to resolve the problem are
taken.

Resource management function

RM manages provisioning, configuration and availability of storage, network, and computation
resources within its management scope. It maps virtual infrastructure requests to the physical
resources of the cloud infrastructure in order to make sure that the provider’s goal with respect to
how its physical resources are allocated is satisfied while ensuring that low-level goals associated
with the requests are achieved. Given a request for virtual infrastructure, RM identifies possible
solutions based on input from Resource and Performance monitoring, status reports from the FM
function, as well as goal fulfilment requests from the GT function. RM implements a solution
selected by GT, which is dynamically adapted in order to handle varying conditions in the cloud.
RM function allocates/de-allocates multiple resources of multiple types at the same time, allowing
deployment of entire, or parts of a virtual infrastructure request.

The RM function consists of two blocks; resource allocation (RA) and resource adaptation-
optimization (RAO). The RA block is involved in the initial deployment of a virtual infrastructure
request: computing possible solutions for a request and implementing the one chosen by GT. The
RAO is a reactive process that dynamically re-optimizes an existing resource allocation in order to
make sure that the goals of the provider as well as the low-level goals of the customer are achieved
at all times.

The RM function needs as input: information on the physical resources (such as type/architecture,
resource capacity, topology, current load, performance objectives, etc.), virtual resources (such as
demand forecasts, low-level goals, etc) and faults (performance degradation and disturbance infor-
mation). As output, RM provides resource availability information on request; possible solutions
for provisioning (to the GT optimization block); monitoring specification for resources and con-
figurations; parameter settings to the resource control functions for configuration of resources and
equipment included in the accepted provisioning solution.

SAIL Public 39

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

4.2 Implemented Approaches to Goal Translation

In this and the following three sections follow descriptions of the approaches made within the
management and security tasks of WPD toward realizing the CloNe vision and requirements with
respect to the management and security architectures in the intra-provider setting. First out are
the approaches to goal translation within a single provider.

For the intra-provider, we present three approaches to address the challenges for goal translation.
The first challenge is to enable the specification and management of service requests independently
of the underlying physical or virtual infrastructure. Among the benefits that may result from
addressing this challenge is that service requesters may use a high-level specification language
both for specifying and for defining constraints on the requested service, from which a virtual
infrastructure service can be provided through automatic mapping of the high-level specification
to virtual resources. Another benefit lies in the possibility of enabling desirable features of the
mapping mechanism through extension of the high-level request language. The challenge of devising
such a language and mappings is relevant for both the intra- and inter-provider settings. While
the language for requesting services should not necessarily be different, the mapping from service
request to virtual services may take different forms in the intra- and inter-provider cases. The
approach to addressing this challenge for the intra-provider case is described in Section 4.2.1.

The second approach addresses the challenge with respect to matching of service requests a
provided infrastructure services taking into account the volatility and inherent uncertainty in a dis-
tributed virtual infrastructure environment. With the multi-tenant and multi-provider requirement
of CloNe, together with the distributed nature of cloud networking, it may become hard to predict
and determine an infrastructure provision that is appropriate for a particular service request for the
duration of the service. This has implications on how services should be specified and on how to
best provision for the service request, as well as for conforming to SLAs related to the request. This
challenge has been addressed via a proposed framework where services are requested in terms of the
desired performance (instead of e.g. desired configurations of VMs) and where such specification
are translated, through optimization, into performance objectives, where the translation takes the
current state of the physical and virtual infrastructure into account when determining an optimal
provision. See Section 4.2.2.

The third approach concerns how high-level security requirements (specified by users or tenants)
can by translated into resource-level specifications of security policies. This approach is described
in the security management section (Section 4.5) further below.

4.2.1 VXDL as a Language for High-level Goals

To address the challenge of devising a suitable high-level request language, we propose the use of
VXDL [36]. VXDL is a unifying modelling language for describing virtual infrastructures, which
defines a simple grammar for enabling a high-level representation of both the diversity of virtual
resources (e.g., nodes, routers, access-points, links, storage) and the constraints attached to them
(e.g., capacity and performance attributes, reliability and security levels, geo-location of resources,
network topology). With VXDL, end users can detail a FNS configuration independently of the
physical substrate. A benefit of VXDL is that it can be extended with mechanisms for controlling
the mapping of user requests to resource allocation. This subsection presents a VXDL [36] extension
on Elasticity that provides a way to define rules to react in a typical way (e.g. changing the
resources’ capacities/attributes, adding new resources dynamically) when a given event is detected
(e.g. triggers over monitoring events on classic or custom metrics).

The state of the art with respect to defining elasticity rules and providing for automated scalabil-
ity [37, 38, 39, 40, 41, 42] considers only scaling arrays of virtual machines up and down, according
to some metrics. These metrics are usually related to CPU, memory, storage and network activities.

SAIL Public 40

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

Scaling arrays of VMs up and down are only part of the elastic provisioning. Moreover, considering
VMs as the granularity unit for scaling virtual infrastructures can lead to a waste of capacity for
both user and provider. By considering elasticity on network resources as well as computing re-
sources, the approach extends the state of the art to a more fine-grained mapping of user requests
to resource allocation.

For the purpose of meeting the challenges of CloNe, it was identified that VXDL must be ensured
to be able to express constraints on the following elements:

Resource capacities: (e.g. CPU, memory, storage, bandwidth configuration) we introduce the
intervals [MIN, MAX] to indicate the values of capacity that are acceptable for a given
resource (only values belonging to interval should be provisioned). We also define events to
describe the conditions which would cause a value to scale.

Scaling virtual elements: the virtual array element also get a interval [MIN, MAX] to specify the
limits in terms of elements inside the array.

Latency: the latency attribute also gets a [MIN, MAX] interval but its meaning is slightly different
from the other attributes. It provides additional information that can be used to identify the
correct position/place where resources must be provisioned so as to respect this constraint.

Location: this allows to identify a specific (or general) location where a resource (or a complete
FNS) should be provisioned.

Application performance and metrics: by using the TAGS system (a triplet composed of a key, a
type and a value), a user can identify metrics that should be monitored during the execution.
A set (or subset) of metrics can be combined for representing the appliance performance.

The extension of VXDL, with the constraint types listed above, allows to define elastic rules
that join events in the virtual infrastructure with actions to be executed. These events can be
defined as thresholds over monitored resources. The actions permit to modify any element, or
attributes of any element, that are defined within a virtual infrastructure. The actual execution
of the modification may depend on the availability of the physical resources or the capacity of the
physical resources to allow runtime modifications of the initial deployment.

The Elastic Control API is designed to allow infrastructure service users or tenants to interact
with an elastic FNS service. To be able to generate the events or to identify that a given event
is triggered, we assume that we have access to a mapping of the monitoring metrics over the
elements of the virtual infrastructure (possibly over a REST API) of the CPU, Memory, storage
and bandwidth metrics.

Table 4.1 summarizes the different actions possible through the Elastic API. These actions can be
exposed through a REST API. For instance, the creation could be done by doing a POST operation
on the specific element of the virtual infrastructure, as in POST /ypxis/{ypxiId}/ylinks.vxdl, which
would allow to create a new virtual link. The described extension of VXDL has been validated
through inclusion in the CloNe prototype.

4.2.2 Goal Translation Algorithm

The volatility and inherent uncertainty in cloud networks has potentially negative implications for
service provisioning and SLA conformance. To tackle this, an algorithm, called goal translation
algorithm (GTA), was formulated where the mapping of service requests to virtual infrastructures
is made via optimization taking the state of the underlying resources into account.

In the intra-provider, GTA transforms constraints (called goals) on service performance pa-
rameters (which in the general case are QoS parameters, and in the degenerate case merely VM

SAIL Public 41

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

Operations Descriptions Parameters

Get Get all operations allowed for a resource. UUID of a resource

Get [MIN, MAX] physical information.

Create Create a VResource VXDL file
(VNode, VRouter, VLink, VStorage, VAccessPoint)

Delete Delete a VResource UUID of a resource

Update Update a VResource configuration Specific configuration

Table 4.1: Elastic API possible actions

specifications) into resource configuration objectives. In this process, GTA first collects potential
solutions (i.e. resource configuration specifications) from one or several resource managers. The
potential solutions take into account the current state of the providing nodes, obtained via per-
formance and resource monitoring function. A potential solution gives an estimate of the level to
which it can perform with respect to the performance parameters given by the goals. With the aid
of performance models, GTA selects the candidate solution that best matches the requested goals.
The best match is determined through multi-objective optimization. The resource manager that
provided the best candidate solution is subsequently offered to provide the service, according to
configuration objectives obtained from the performance model with which it supplied the solution
alternative. Next follows a brief description of a basic instantiation of the GTA framework, for
which details can be found in [43].

In [43], we consider the case with one goal for one requested service. The goal consists of the
constraints C1, . . . , Cn where each constraint Ci is a probability distributions over a performance
parameter ξi. It is assumed that there are m possible provider nodes for the service and that exactly
one provider will suffice. When posed with the goal, GTA requests potential solutions from each
node, thus obtaining the performance guarantees Qj,i, for j = 1, . . . ,m and i = 1, . . . , n. Qj,i is a
probability distribution describing how well the node j can perform with respect to the parameter
ξi. Via a definition of distance M between probability distributions, we can for the intra-provider
choose the Qj,i that is the closest to Ci for each i, via minimizing the expression

∑n
i=1 |Mi(Qj,i, Ci)|

with respect to j = 1, . . . ,m.

min
j

n∑
i=1

|Mi(Qj,i, Ci)|, j = 1, . . . ,m (4.1)

In the intra-provider, we can assume that each node provides an estimate Qj,i as close as possible
to Ci, since that (as argued in [43]) leads to the most efficient resource allocations. However, in
the inter-provider setting, with possible competition and diversity of business models, we need a
slightly different optimization procedure, as we cannot assume that Qj,i reflects the true capacity
of node j as there may be economic, or other, incentives to underrepresent (or over represent for
that matter) ones capacity. See [43] for further details on such issues in the inter-provider. Central
in this approach are the performance models from which the performance guarantees Qj,i are
obtained. Each service provider j ∈ {1, ...,m} is assumed to have been monitoring its behaviour
with respect to ξ1, . . . , ξn and its own service configuration parameters πj,1, . . . , πj,m, and thus
obtained probabilistic performance models of the form P (πj,1, . . . , πj,m|ξj,i) Note that we may
assume that πj,1, . . . , πj,m are parameters of distributions that describe the configuration of the
node. Observe that via such models, parameters used in the higher level goals (i.e., the parameters

SAIL Public 42

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

ξi) are related to parameters πj,1, . . . , πj,m used in performance objectives (or lower level goals).
Assuming that it is k that minimizes Equation 4.1, i.e., that the performance guarantees provided
by node k were the closest to the constraints Ci, then the node k will be selected for provisioning
according to the request. And thus according to the performance model, node k will operate under
the objectives given by πk,1, . . . , πk,m.

4.3 Implemented Approaches to Fault Management

Fault management in complex, virtualized and dynamic networks requires solutions that can adapt
to varying virtual topologies and effectively exchange information between fault monitoring entities.
In addition, fault management algorithms operating in two dimensions of the cloud networking
infrastructure are also needed. First, individual services that span across the network need to
be monitored and analysed for detection of performance degradations and faults. Secondly, fault
management algorithms that operate across stacked layers are needed for efficient fault localization
and root-cause analysis within relevant sub-topologies. The challenges in these respects therefore
relate not only to scalable protocols, but also to timing and synchronization in the process of
e.g. correlating detected events. Another challenge is the limitations and restrictions in the actual
hardware and software across heterogeneous equipment, controlling to which degree a network entity
can be monitored for fault management purposes. In connections that share passive, forwarding
network equipment, direct detection of performance degradations and localization to intermediate
connections is rather complicated, as measurements of e.g. link delays only reflect the behaviour
of the entire connection between the active, endpoint nodes. However, for efficient configuration of
resources and SLA maintenance, it is crucial that faulty or anomalous behaviour can be detected
and accurately localized to a certain link or node in any part of the network.

The contribution to the CloNe fault management functionality addresses the above challenges,
and includes algorithms for detection of performance degradations, faults and anomalies, as well
as fault localization and root-cause analysis. Throughout the project two algorithms [44, 45] have
been developed following the functions of the CloNe management as described in [2], implementing
functionalities within the scope of Fault Management (FM). The algorithms cover fault management
functionality within individual virtual network connections as well as across stacked virtual layers.
Moreover, the algorithms are designed for decentralized operation and may be used in both intra-
and inter-provider environments, given that relevant topology and measurement information can
be accessed in fault monitored resources. Information exchange between fault monitoring nodes
and management functions (such as reports about modelled QoS and detected events) as well
as algorithm configurations can be done through the management interfaces and the resource
administration interfaces [2]. Disseminated information is used for the purposes of re-allocation
or updates of resources and goals within RM or GT (e.g. for fault handling), and for information
exchange with other FM algorithms.

Virtual overlays and network connections are based on active and passive network equipment,
where the endpoint nodes directly measure the QoS across connections of intermediary, passive
points, towards other endpoints. With the current use of management and monitoring tools, direct
localization of faults, anomalies and performance degradations on individual links between inter-
mediary points is either impossible or complicated in terms of additional measurements (using e.g.
external probing nodes). Here, we propose a statistical approach to detect and localize changes
in individual link performance based on deriving link delay estimates from end-to-end measure-
ments [45]. Initial results suggest that our approach can successfully model link segment QoS and
that changes on individual link segments can be efficiently localized, thereby reducing diagnostic
and troubleshooting efforts. As input, the algorithm needs topology information, responses from
monitored equipment and algorithm configuration parameters (here detection thresholds and model

SAIL Public 43

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

parameters for the overlapping estimators). The outputs of the algorithm are estimated QoS pa-
rameters (here link delay and packet loss) for individual links on the connection, as well as detected
and localized performance degradations.

As virtual overlays depend on shared resources, a scalable and efficient solution is a necessary
part of the FM function to effectively pinpoint the true root cause of a service failure detected
in one virtual layer, that may be caused in some other, virtual or physical, layer. Based on the
management functions, our approach operates in a decentralized manner, and targets the problem
of determining the root cause of spatio-temporally relevant events, as described in [44, 2]. The
algorithm collects events that are topologically relevant within a certain time period across stacked
overlays in the nodes. Furthermore, the algorithm can be triggered on demand by the operator
or automatically - either in intervals or when certain detection criteria are met. As input, the
algorithm needs topology information and access to generated historic events in monitored nodes.
The output is a set of spatio-temporally ordered events used for localizing the root cause or origin
of a performance degradation, fault or change in stacked virtual layers. The spatio-temporally
ordered events are then handled locally in the triggering node and/or shared (enabled through
management resource administration interfaces) with relevant recipients within the management
functions (FM, RM or GT), for the purposes of further analysis and for adaptation of monitored
services in accordance with QoS requirements and SLAs. As the algorithm can operate over any
types of virtual connections or nodes capable of implementing the protocol, the algorithm can be
set operating over both intra- and inter-provider environments, given that relevant information can
be accessed.

4.4 Implemented Approaches to Resource Management

Cloud networking resource management is a diverse set of management tasks involving both allocat-
ing the appropriate resources and configuring those optimally, as well as run-time re-optimization
and service migration. This section covers several approaches to allocation and optimization of
compute and network resources. Each approach has addressed a particular challenge, or aspect, of
resource management. The section also describes an approach toward devising an API for unified
management the diversity of resources and rather large number of available configuration strategies.

For network operators, one of the major challenges when providing FNS lies in the efficient
embedding of a virtual network (VN) onto a physical network. Since this process requires the
simultaneous optimization of virtual nodes and virtual links placement, it is complex in nature and
requires large amounts of computing power. Some authors [46, 47, 48, 49] have already proposed
solutions to this problem, mostly based on heuristic approaches, but have failed to provide the
optimal solution for each VN mapping. This challenge is addressed and the approach is described
in Section 4.4.1.

A key problem in resource management is that of mapping a set of applications onto a system
of heterogeneous nodes (that provide resources to those applications) and, for each such node, as-
signing local resources (such as CPU, memory, storage, network bandwidth) for the applications
mapped to it. The quality of resource allocation is measured from the point of view of the provider
(i.e., how well the allocation adheres to the provider’s management objectives, such as load bal-
ancing or energy minimization) and from the point of view of the customer (i.e., how well are the
goals for each customer application achieved). This quality measure is often made through a utility
function whereby an optimal allocation maximizes such a system utility. As the resource demand of
customer applications may change over time, the resource allocation process needs to be dynamic,
in order to ensure that the system utility is maximized at all times. Optimal resource allocation
in the sense of utility maximization is often computationally expensive. This challenge has been
addressed by devising a number of heuristic protocols for resource allocation optimization. See

SAIL Public 44

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

Section 4.4.2.
As different kinds of cloud resources tend to be requested jointly, e.g. compute, storage, and

network resources, it is important to enable also joint allocation of the requested resources. An
approach to joint allocation of compute and network resources is given in Section 4.4.3.

To cope with high loads, service providers construct data centres with tens of thousands of
servers[50]. Such data centres, which often provide a single service, may be located in different
places around the world. The actual choice of the specific server to process a given request has a
critical impact on the overall performance of the service. Congested servers may introduce service
delays, networking bottlenecks around the server, and may further deteriorate the service, due to
dropped packets. The server to service-request assignment is a very difficult optimization problem;
in many cases, there are multiple objectives and many parameters that should be considered. For
example, the current load of available servers, which can be expressed in term of the number of
pending jobs, or the estimated time to complete all pending jobs, is an important input parameter.
Also network latency can also be taken into account for job scheduling. These and other param-
eters can be reported, estimated or learned for the server assignment problem. Regardless of the
exact optimization criterion, any adaptive system that attempts to address this problem incurs a
significant amount of overhead and possible delays, just by collecting the needed parameters from
the various network locations. This challenge has been addressed with a scheme called Oblivious
Load Balancing. The approach is described in Section 4.4.4.

The issues of efficient resource allocation and utilization have direct impact on business models
and the overall success of cloud computing and networking. One way to improve efficiency of
resource allocation and utilization in the setting of cloud networking is to enable infrastructure
service providers to predict the load and stress on its virtual and physical resources. This challenge
has been approached by addressing probabilistic network bandwidth management in the context
of Video on Demand (VoD) servers (Section 4.4.5).

Finally, the diversity of resources being jointly requested and the large number of allocation
strategies calls for a unified request and management API. An approach to such an API is given
in Section 4.4.6.

Demand prediction, as described below in Section 4.4.5, can be used for supporting the re-
source allocation and optimization functions described in the Sections 4.4.1, 4.4.2, 4.4.3, and 4.4.4.
Specific to the resource allocation optimization (RAO) function, 4.4.1 investigates the problem of
optimizating network resource allocation and section 4.4.2 investigates scalable optimization of com-
pute resources based on gossip protocols. Section 4.4.4 addresses a the specific allocation problem
of load-balancing. Section 4.4.3 investigates joint allocation of compute and network resources.

4.4.1 Network Optimization

Flash Network Slices can be materialised through different kinds of network technologies; one of
this technologies is network virtualisation. Network virtualisation can be described as the best fit
to provide cloud networking services due to its nature in terms of dynamicity and flexibility.

This section presents a proposal of an integer linear programming (ILP) formulation to solve
the Virtual Network (VN) assignment problem and to provide the optimal bound for each VN
embedding. The formulation supports heterogeneous virtual and substrate networks. Simulation
experiments show significant improvements of the VN acceptance ratio when comparing the ILP
formulation with an existing heuristic [49]: in average 10% more of the VN requests are accepted,
which corresponds to more efficient use of the physical network. For further details on the proposed
mathematical model, please refer to [51].

The problem of embedding VNs is solved by using an ILP formulation [52]. Assume that there
are P physical nodes and V virtual nodes. Then two binary assignment variables are used for the

SAIL Public 45

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

VN mapping process: x for the virtual nodes, where xmi → NV ×NP matrix (equation 4.2)

xmi =

{
1, virtual node m is allocated at physical node i
0, else

(4.2)

and y for the virtual links represented in equation (4.3), where ymnij → (NV)2 × (NP)2 matrix.

ymnij =

{
1, virtual link mn uses physical link ij
0, else

(4.3)

The objective function (4.4) is divided into two parts. The first part minimizes the maximum load
per physical resource. In the case of having different mapping solutions with the same maximum
utilization, the second part is activated opting for the solution that consumes less bandwidth.

minimize Cmaxload +Mmax
load +Bmax

load + ε×
∑

m,n∈NV (m),n<m

ymnij ×BV
mn (4.4)

where Cmaxload , Mmax
load and Bmax

load are upper bounds of the maximum CPU, memory and bandwidth
utilization of the all network (See [51] for further details). In order to solve the problem, further
constraints are added, as described in [51]. In short, we need to add constraints for ensuring that
each virtual node is assigned to one physical node; that no physical node accommodates more than
one virtual node per VN request; that the available capacity of all physical nodes and physical
links is not exceeded; the requirement on the CPU frequency is not violated. In order to optimize
the mapping of the virtual links and at the same time to cope with the optimization of the virtual
nodes, we apply also the multi-commodity flow constraint [53] with a node− link formulation [54],
and we also use the notion of direct flows on the virtual links, which is represented in equation
(4.5).

∀m,n ∈ NV (m),m < n, ∀i :
∑

j∈NP (i)

(ymnij − ymnji) = xmi − xni (4.5)

We used several performance metrics to evaluate the optimal model and the heuristic algorithm[49].
We measured the acceptance ratio and the number of accommodated VNs as a function of the num-
ber of VN requests per time unit. Details of the simulation results are published in [51].

4.4.2 Scalable Compute Resource Optimization

CloNe addresses the problem of managing compute resources for a large-scale cloud environment,
with the objective of serving a dynamic resource demand for various management objectives. While
more general, the presentation of the approach focuses here on Infrastructure-as-a-Service (IaaS)
where an elastic cloud service provider is hosting VMs in the cloud environment. The VMs are the
mechanisms through which compute resources are provisioned in flash slices. The cloud provides
service elasticity in the sense that it dynamically adapts the number of instances of VMs running a
specific application, and the amount of resources allocated to each instance, in response to change
in demand of for the application running in the VM. This work contributes to resource adaptation
and optimization (RAO) function in the management architecture. The solution approach cen-
ters around a decentralized design, where the components of the RAO middleware run on every
server of the cloud environment. The approach extends existing management software for private
clouds (e.g., OpenNebula, OpenStack, AppScale and Cloud Foundry), by combining and integrat-
ing dynamic adaptation of existing resource allocation in response to a change; dynamic scaling
of resources for an application beyond a single physical machine; and scalability beyond 100,000
servers.

SAIL Public 46

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

The solution takes departure in a number of optimization problems corresponding to specific
design goals:

1. Performance objective: the allocation of resources should achieve management objectives that
are specified by the manager of the cloud at run time while achieving the goals set for each
application. In particular, we consider two management objectives: fair resource allocation
and minimizing energy consumption.

2. Adaptability: The resource allocation process must dynamically and efficiently adapt to
changes in the demand.

3. Scalability: The resource allocation process must be scalable both in the number of servers
in the cloud and the number of VMs the cloud hosts.

The problem of resource allocation optimization is formulated as an optimization problem whose
formulation depends on the specific performance objective and on a model for resource allocation,
developed as a part of the work in the project. The resource allocation model assumes discrete time,
where, e.g., demand changes and resource configurations occur at discrete time steps. Consequently,
the optimization problems are also stated with the discrete time assumption. This assumption
facilitates subsequent analysis and simulation of the proposed solutions. The RAO problem is
formulated as a utility maximization problem with two prioritized objective functions; one for
maximizing the utility of a configuration A(t + 1) (of all machines in, e.g., a single provider)
together with a demand ω(t + 1) on compute resources, in a state (t + 1), and the second for
minimizing the cost of reconfiguring the machines from the configuration A(t) (in state, or time
point, t) to the configuration A(t + 1). These two objective functions are optimized with respect
to constraints on correct demand splitting, CPU capacity, and memory capacity. For details about
the formulations (and solutions) of the optimization problems and the resource allocation model,
please refer to [55, 56, 57].

CloNe proposes a generic gossip-based protocol for the RAO problem, which can be instanti-
ated for various management objectives, called GRMP (Generic Resource Management Protocol).
GRMP runs on each machine of the cloud that hosts VMs. Two instances of the protocol have been
developed and prototyped. The first instance, GRMP-P, is a protocol developed for the objective of
fair allocation of resources among the hosted VMs [55]. The second instance, GRMP-Q, allocates
resources to hosted VMs such that it uses as few machines as possible, allowing the remaining
machines to be put on standby and hence reducing the energy consumption of the cloud [56].

The performance of GRMP-P and GRMP-Q has been evaluated through simulations using a
discrete event simulator. In the simulation, each machine in a distributed system executes the
protocols in response to a significant change in CPU resource demand. The performance of the
protocols was evaluated under varying intensities of CPU and memory loads. The results show that
the protocols perform well. Specifically, for GRMP-P (i.e., the fairness protocol), the fairness metric
approaches that of an ideal system with decreasing memory load factor (MLF) (i.e., low memory
load). For GRMP-Q (i.e., the energy reduction protocol), the fraction of machines freed up is close
to the ideal system when MLF is low. The results also show that all key metrics considered in the
evaluation do not change with increasing system size, making the resource adaptation approach
very scalable, beyond 100,000 servers. Details of the simulation results are published in [55, 56, 57].

An implementation of GRMP that builds upon the OpenStack cloud management platform has
been included in the CloNe prototype[3].

4.4.3 Joint Resource Allocation

The two previous sections, 4.4.1 and 4.4.2, address the resource allocation problem for network and
compute resources, respectively. Dealing with network and compute resources in a separate way

SAIL Public 47

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

can be a viable approach in today’s world, a world where there is a clear demarcation between
network and compute resource management. To be able to meet more complex requests for virtual
infrastructures with heterogeneous resources, we need also to consider joint allocation mechanisms.
In line with the preliminary work presented in [2], we here propose an algorithm for allocating virtual
infrastructures, i.e., a joint resource allocation for compute and network resources. Presented in
[58], the proposed algorithm tries to provide solutions to what it is known to be an NP-hard
problem.

The algorithm is inspired by the concepts of node and link stress, i.e., links and nodes with less
stress are more prone to accepting new virtual resources. Its management objective is to minimize
the stress of resources and to balance the stress among resources, so that the physical infrastructure
can accommodate as much virtual infrastructures as possible.

Stress is an indicator of how likely a physical resource is to host a virtual resource in comparison
with other physical resources. This indicator is used on the mapping algorithm to calculate the
potential of a certain physical candidate to host a virtual resource. However, the joint compute
and network approach requires that the potential of a candidate is calculated considering the stress
of physical nodes (compute or network nodes) and the physical links which might be used to host
virtual links.

Algorithm 1 Virtual Infrastructure Allocation Algorithm

1: Calculate link stress;
2: Calculate network and server node stress;
3: Find substrate candidate nodes for each virtual node;
4: Find possible paths between the candidates and a virtual neighbour;
5: Remove candidates without any possible path to one virtual neighbour;
6: If all virtual nodes have a candidate continue, if not stop;
7: Select unmapped node with less candidates;
8: Calculate potential (product of link cost and server stress) of each candidate;
9: Choose the candidate with the highest potential;

10: Save list of candidates and possible paths;
11: Remove non-selected candidates;
12: If there is no candidate left for a given virtual node restore saved data and remove the last

chosen candidate from the candidate list;
13: If there are virtual nodes left to map jump to 7;
14: For each virtual link choose the mapping solution with lowest link cost;

Algorithm 1 provides a brief overview of the allocation algorithm. A detailed description of the
algorithm can be found in [58] along with simulation and experimental results.

In this section the proposed stress formulas are highlighted. Equation 4.6 presents the link stress
formula, which is the value of the bandwidth in use in the physical link. The stress of a network
node is given by equation 4.7, and the stress of a computing node is given by equation 4.8. With
respect to the network node stress, memory, Central Processing Unit (CPU) load, CPU frequency
and the number of active VMs are the parameters taken into account. MEMmedReq represents
the average memory of the virtual nodes, LoadmedReq represents the average load increase for each
virtual node embedded and k represents a constant value. This way, when calculating the potential
of the candidate nodes (which is a product of the link cost and node stress), link cost will be the
most important parameter, until the considered nodes achieve a critical occupation state (that can
be adjusted through the constant k, which the best values were reached for the value of 3).

SL = BWoccupied (4.6)

SAIL Public 48

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

SN =
NumberofActiveV Ms

CPUfreq

(
1 +

k.LoadmedReq

N.CPU − Load+ σ

)(
1 +

k.MEMmedReq

MEMfree + σ

)
(4.7)

SS = NumberofActiveV Ms

(
1 +

K.LoadmedReq

N.CPU − Load+ σ

)(
1 +

k.MEMmedReq

Memfree + σ

)(
1 +

k.STGmedReq

STGfree + σ

)
(4.8)

As to computing node stress formula, memory, storage, CPU load, and the number of active VMs
are the parameters taken into account. The formula is similar to the network one, preventing long
physical paths from being used when the occupation of the nodes is not at a critical level. Despite
not being present in this formula, the CPU frequency is taken into account in the algorithm as an
exclusion condition. Note that in the node stress equations σ is a small constant to avoid dividing
by 0.

4.4.4 Oblivious Load Balancing

The challenge of load balancing of a large distributed server system (such as a cloud) has been
addressed [59] in a way that conforms with the architecture of CloNe. The Resource Management
function (RM) is responsible for allocating cloud resources, considering users’ request and low-level
objectives coming from the Goal Translation function (GT). By implementing our scheme, load
balancing with minimal overhead is made available. The GT function might specify the threshold
resource load rate at which load balancing should be started. The Resource and Performance
Monitoring function (RPM), monitors and reports the current load of the cloud resources, for the
RM function to consider the activation of the load balancing scheme.

The load balancing scheme implements an oblivious approach that does not use any state in-
formation. In addition to the regular job requests that are assigned to randomly-chosen servers,
low-priority replicas are sent to different servers. In some cases, the high-priority copy may arrive
at a loaded server, while the low-priority copy is assigned to a lightly-loaded server and thus will
complete earlier. Since at each server, high-priority jobs are always served before any low-priority
job, the performance of such a system is always at least as good as the basic random assign-
ment technique and, depending on the load, it has the potential of offering considerably improved
performance.

We show that when servers can coordinate the removal of redundant copies upon job comple-
tion, system performance is improved by a factor of 2-5, even under high-load conditions. A
complete overhead free approach without server coordination demonstrates a system performance
improvement of 15-50%. A hybrid approach is suggested, demonstrating moderate performance
improvements at insignificant overhead. In all cases, jobs arrival is based on a Poisson process, and
job length distribution is exponential and heavy-tailed.

As already indicated, our load balancing scheme is launched by the RM function. It could be
always active, or launched depending on input from the GT and FM functions. It requires no
other input (an oblivious approach), but necessitates a two-priority job queue. It might need
coordination among servers, but, otherwise, no output. It addresses the system-wide performance
of the cloud infrastructure (server assignment of cloud requests), where our scheme enables better
server utilization and shorter job completion time.

Our scheme is clearly useful within an intra-provider; once a job request is sent to one cloud, the
job should be assigned to a server in this cloud, and, therefore, no inter-provider load balancing
is possible. For global services (such as Google search engines), that own or lease multiple cloud
infrastructures on a global basis, inter-provider load balancing is possible, utilizing a management
function that is outside of a specific cloud. This is clearly an attractive proposition, but might be
too advanced. Load balancing needs to be deployed and show its benefits within the intra-provider,
before inter-provider will be exploited. It is expected that the cost (in terms of delay or overhead)

SAIL Public 49

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

for inter-provider management of our load balancing scheme will be higher than the cost within
one provider.

4.4.5 Probabilistic Demand Prediction

CloNe is addressing probabilistic network bandwidth management in the context of Video on
Demand (VoD) servers. Properties of user behaviour and workload generating mechanisms are
captured through mathematical modelling, using modified Markovian epidemic models. Specific
statistical properties of this model permit to derive the distribution of the mean workload of a
system over a given time frame. Then, we leverage on these quantities to devise probabilistic man-
agement policies that adapt the allocated resources to the current need, dynamically. For more
details see [60].

The epidemic model for the VoD system assumes that people watching a video will encourage
others (gossip) to do the same (this is the epidemic aspect), and that the demand for the video
thus grows through word of mouth. The model distinguishes between a set I of people currently
watching the video and who can spread the information about it, and a set R of people, which refers
to the past viewers. In contrast to the classical epidemic case, we introduce a memory effect (which
is valid for certain cases) in our model, assuming that the R compartment can still propagate the
gossip during a certain random latency period. I and R have corresponding stochastic processes
(NI(t))t≥0 and (NR(t))t≥0 representing the time evolution of people watching, respectively having
watched the video. The model takes into account β > 0 as the rate of information dissemination
per time unit and l > 0 fixing the rate of spontaneous viewers, together with the assumption that
the watch time of a video is exponentially distributed with rate γ. Another important consideration
of the model is the maximum allowable viewers (Imax) at any instant of time (reflecting physical
limitations of the system). We also assume the number of past (but spreading rumour) viewers at a
given instant to be bounded by a maximum value (Rmax). To obtain further realism in the model, a
Hidden Markov Model (HMM) is added to introduce the so-called “buzz effect”: an event signifying
that large amounts of information about a particular video is spread during a short period of time.
Thus, the HMM has two states associated to a different rate β of information propagation: higher
for buzz, and lower for a buzz-free situation.

The model is used for generating workload traces. Such traces are further used for probabilistic
resource provisioning through application of the Large Deviation Principle (LDP). Calling 〈i〉τ ∈ R
the workload sample mean calculated over a given time period τ , the LDP gives its correspond-
ing statistical distribution Pr {〈i〉τ ≈ α = exp{τf(α)}, where f(α) is a scale-invariant spectrum
that can empirically be estimated from the parameters of the model. We use this spectrum for
quantifying the probability of the future mean workload of a system.

For the VoD use case, a VoD service provider wants to determine the reactivity scale at which
it needs to reconfigure its resource allocation. This quantity should clearly derive from a good
compromise between the level of congestion (or losses) it is ready to undergo, i.e. a tolerable
performance degradation, and the price it is willing to pay for a frequent reconfiguration of its
infrastructure. Let us then assume that the VoD provider has fixed admissible bounds for these
two competing factors, having determined the following quantities:

• α∗ > αa.s.: the deviation threshold beyond which is becomes worth (or mandatory) consid-
ering to reconfigure the resource allocation. This choice is uniquely determined by a capex
performance concern.

• σ∗: an acceptable probability of occurrence of these overflows. This choice is essentially
guided by the corresponding opex cost.

We moreover assume that the LD spectrum f(α) of the workload process is estimated, either by
identifying the parameters of the Markov model used to describe the application, or empirically

SAIL Public 50

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

from collected traces. Then, the minimum reconfiguration time scale τ∗ that yields a dynamic
resource provisioning and satisfying to the sought compromise, is simply the solution of the following
inequality:

Pr {〈i〉τ ≥ α∗} =

∫ ∞
α∗

eτf(α) dα ≥ σ∗, (4.9)

with f(α) as defined above. From a more general perspective though, we can see this problem as
an underdetermined system involving three unknowns (α∗,τ∗ and σ∗) and only one relation (4.9).
Therefore, and depending on the sought objectives, we can imagine to fix any other two of these
variables and to determine the resulting third so that it abides with the same inequality (4.9).
We stress on the fact that Equation(4.9) does not provide any analytical solution, rather it is a
numerical solution where the operator chooses two parameters and finds the third one according
to his need.

4.4.6 Customizable Cloud Resource Management

Current software platforms for the management of cloud infrastructures (e.g., OpenStack [17],
Eucalyptus [61], OpenNebula [16]) tend to separate resource management into computing, storage,
and network management. As opposed to computing and storage management, which have been
extensively explored in the last years, network management in cloud environments is rather in its
infancy. Therefore, most cloud management platforms rely on external management systems for
more complex, network-layer configuration (e.g., DHCP servers, manual VLAN establishment, NAT
or forwarding rules on iptables). In current cloud management systems, customers describe the
resource they need in a rather simple way and receive back such resources, somehow provisioned by
the cloud. While VXDL improves on the expressiveness of the description language, the mechanisms
used to perform the resource allocation will remain closely bundled with the cloud management
system in use.

The vision for CloNe points beyond the state of the art as it aims at a tight integration of
management of network, compute, and storage resources. Envisioned is a unified API that can be
used by cloud providers and cloud customers. This API shall enable site/environment (provider)
as well as application (customer) specific algorithms for allocating and continuously re-adjusting
resources. An approach for devising such a unified API has been made within the work package,
with aim of achieving the following goals:

• Robust networking support for cloud environments through the use of modern networking
paradigms (e.g., software defined networks (SDN));

• Support for richer specification of virtual infrastructures, including all kinds of virtual re-
sources (i.e., computing, storage, and network) as well as application-specific requirements
(e.g., elasticity rules);

• Flexible resource allocation strategies, with programmable APIs, so that operators can de-
scribe and run personalized algorithms for application deployment and optimization.

Figure 4.1 depicts the conceptual building blocks of the architecture of the HyFS Manager. The
four major components include the Cloud Resources which are controlled and monitored by the
Control Logic. Different types of resources can be controlled by different Drivers, yet all of them
provide a unified API to the Custom Programs and the User Interface.

The User Interface represents the interaction point with the HyFS framework. Through it the
specification of the requested resources is transmitted to the system. The initial specification
consists of up to three parts. All requests need a description of the desired resources. HyFS

SAIL Public 51

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

C
o

n
tr

o
l L

o
gi

c

/
D

ri
ve

rs

Physical Ressources Physical Ressources Cloud Resources

libnetvirt ??? ???

libvirt

OF, libvirt

SNMP

Network Compute Storage Monitoring

C
u

st
o

m

P
ro

gr
am

s

Allocation
Algorithm

Allocation
Algorithm

Allocation
Algorithm

Allocation
Algorithm

Allocation
Algorithm

Allocation
Optimizer

Allocation
Algorithm

Allocation
Algorithm
Load-

tracking

Allocation
Algorithm

Allocation
Algorithm
Service
specific

User
Interface

Service
specific

algorithm

VXDL
Description

Service
specific

KPIs

Figure 4.1: Conceptual Architecture of HyFS Manager

specifications can optionally include service specific key performance indicators (KPIs) and service
specific resource management algorithms, extending current cloud control systems functionalities.

The custom programs implement the actual management of resources. The programs can either
be provided by the user along with a request for cloud resources, or developed by the cloud provider.
In practice the cloud provider needs to review the customer provided algorithms before executing
them, or the application specific algorithms are co-developed by provider and customer. We envision
that a basic set of programs could be shipped together with HyFS, which can then be tuned to
the needs of each cloud provider. We envision at least three types of custom programs: Allocation
Algorithms, Allocation Optimization and Load-Tracking.

The core concept behind HyFS custom programs is to allow the administrator to plug in and
run different algorithms (e. g., centralized vs. distributed, complex multi-objective vs. simple
heuristics) depending on the particular needs of the cloud environment. Algorithms may use a set
of common functions provided by a programmable unified API implemented by the Control Logic
to access and modify virtual resource allocations.

The most important part of the Control Logic is to provide a resource independent interface for
managing the cloud resources. In HyFS this unified API allows to manage all of network, compute,
storage and monitoring on the same level. Pluggable drivers for different types of resources can
provide compatibility with a wide variety of existing and future cloud resources.

The concept of providing an allocation algorithm and key performance indicators along with
a cloud resource request has also been employed by the Elastic NetInf Deployment cross-WP
prototype described in Chapter 4 in D.A.9 [62].

A prototype of the unified API was demonstrated at the Student Workshop at NOMS’12 [63]
and is described in Section 5.3.3 in Deliverable D.A.9 of SAIL [62]. The cloud management system
prototype is called Hybrid Flash Slice (HyFS) Manager, where ”hybrid” refers to the integration of
network and compute/storage management. At the moment it is designed for a single provider, but
allows for multiple data centre locations. Recently, the description of HyFS Manager’s architecture

SAIL Public 52

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

was accepted as a short paper at CNSM’12 [64]. In this deliverable we outline the architecture and
refer the reader to the paper [64] for details.

4.5 Implemented Approaches to Security Management

The approach to security management builds on the security requirements and the security goals
described in Section 2.6. In the intra-provider case, security requirements and goals are fulfilled
through the operation and interaction of five security modules: SIEM based intrusion detection
system, auditing and assurance, identity management, security goal translation, and access control.

Access Control aids entities in the CloNe environment to set and implement access control policies
on the underlying resources. Access control policies may either be directly specified by entities
with plausible roles, namely, the infrastructure service user, infrastructure service provider or the
administrator, or could be indirectly derived from the security goals specified by another entity.
The Access Control policy model should cover all types of access control policies and should be
easily implementable without large overhead and dependencies on other functions.

The auditing and assurance module maintains records on the fulfillment of deployed performance
objectives. It further makes it possible for the participating entities to verify that the security
mechanisms functioned properly during a specific interval of time, especially in the case of a security
breach. The auditing mechanism should be invoked periodically or on request, and it should be
modular, that is, it should compose smaller and independent modules used to audit, assert, and
assure specific sections of the overall CloNe infrastructure.

The Identity Management module has three primary features: identity provisioning, authentica-
tion and authorisation, and compliance. Identity provisioning and authentication is a critical for
enabling efficient management of identity credentials of CloNe entities and virtualized resources.
Authorisation is necessary for setting up access control policies depending on the requirements
of the CloNe entities. The identity management framework must furthermore comply with the
security policies set by the CloNe entities.

Figure 4.2: Interaction between Security Functions

Figure 4.2 depicts the interaction between the different security functions, namely, SIEM based

SAIL Public 53

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

Intrusion Detection System (IDS), security goal translation function, auditing and assurance func-
tion, identity management function, and access control function. The detailed operations and
interactions between these security components are described in Sections 4.5.1, 4.5.2, 4.5.3, 4.5.4,
and 4.5.5.

4.5.1 SIEM based Intrusion Detection System

In order to address the security challenges raised by improper misuse protection, a SIEM based IDS
[65] has been designed. The SIEM based IDS function detects security incidents which occur in the
CloNe infrastructure, and provides a real-time analysis of these security alerts. The SIEM system
continuously monitors the underlying infrastructure and security incidents, and these incidents are
further categorized and prioritized. This prevents an unnoticed incident to escalate and result in a
security threat. Furthermore, the SIEM system also raises flags and security notifications when the
risk score of a particular threat exceeds the acceptable limits specified by the security administrator
or the security goal translation function. The role of the security administrator is played by the
Administrator, Infrastructure Service Provider, or both. The security administrator determines
the acceptable risks, permissible risks, and security policies which are stored in a central policy
database. The SIEM system utilizes a policy manager which is responsible for editing security
policies in the policy database. Furthermore, the SIEM system interacts with a policy enforcer
(Section 4.5.3), which is used for assurance of the implementation of the security policies on the
underlying policy database.

An IDS with an acceptable false alarm rate and low operational overhead, which has been
customized for the underlying CloNe infrastructure, forms the backbone of the SIEM system [66].
The acceptable range for the false alarm rates of an IDS depend on various factors, for example,
the provisioned service, resource availability, involved service users, time of service provisioning,
number of parallel users, and the countries where the deployed resources are hosted. The primary
role of a SIEM system is to detect and process security events, and take the requisite actions as
devised by the security administrator. Therefore, it is essential to have an accurate tool to detect
and prioritize the security events. The SIEM system uses a new genetic based feature selection
algorithm and an existing Fuzzy SVM for effective classification and prioritization of the security
incidents. Other IDS models, namely, models proposed by Guo et al. [67], Stein et al. [68], and
Cao Li-ying et al. [69] also utilize feature selection and SVMs, and show acceptable performance
when implemented solely as a network IDS. However, the proposed IDS has many advantages
with respect to the above models. Firstly, it has been customized for the CloNe infrastructure,
and integrates seamlessly with the overall architecture and individual functions. Secondly, the IDS
has been designed as a host IDS, which is more suitable for the CloNe architecture. Intrusions
are detected at individual hosts which reduces the network load and also allows easier correlation
between the security incidents generated at multiple host points. Thirdly, intrusions are detected
at the network layer, which would allow all network related attacks to be detected and processed.
The IDS further utilizes a preprocessing technique which is based on genetic algorithms that can
perform attribute selection in an intelligent and efficient manner. Finally, the IDS uses tenfold
cross validation, which validates the system decisions and improves the success rate, bringing down
the false error rate manifold.

[65] describes the details of the proposed genetic based feature selection approach, and its de-
ployment on a CloNe testbed. The deployment has enabled us to extract features relevant for
the CloNe infrastructure from the Knowledge Discovery and Data Mining (KDD) cup data set
[70]. These features enable the IDS to classify the base data set in order to detect network-level
intrusions at the host level. The process has generated a total of 17 features relevant for the CloNe
architecture and have been described in [65]. [65] also compares the detection rates of SVM and
fuzzy SVM with feature selection; error rate comparison of neural network (NN), SVM, and fuzzy

SAIL Public 54

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

SVM; and overall comparison between SVM, fuzzy SVM, and feature selected fuzzy SVM method.
The IDS designed for CloNe utilizes feature selected fuzzy SVM and shows lesser error rate and
higher detection accuracy. The primary advantage of the backbone IDS is its improvement of the
detection accuracy of fuzzy SVM classifiers by extracting and utilizing only the features relevant for
the underlying CloNe infrastructure. This improves the overall detection accuracy of the IDS and
improves the performance manifold while reducing the overhead on the underlying infrastructure.

Once the security incidents have been detected and processed by the backbone IDS function,
they are sent to the SIEM system for further processing. As mentioned in this section, the SIEM
system raises a flag and a security notification when the risk score of a particular threat exceeds the
acceptable limits specified by the security administrator or the security goal translation function.
The security threats are the incidents which have been detected and transmitted by the backbone
IDS. The SIEM system utilizes an automated engine which computes the threat score of individual
threats by utilizing their impact and likelihood of occurrence. These factors have been computed
based on sample tests performed on CloNe testbeds, and require more tests for further refinement.
The automated engine utilizes attack trees [71] and DREAD [72] in order to compute the threat’s
business impact and likelihood of occurrence, and its prioritization based on these factors. Fur-
thermore, the engine computes the risk score of each threat using these factors and determines
whether the risk score exceeds the acceptable limits. The policy enforcer routinely ensures that
the security policies are adhered to, while computing the risk scores and prioritizing threats. The
policy enforcer uses the CloudAudit interface [29] and backbone engine. It accepts inputs from
the policy manager, the resource management function, and the fault management function. The
policy manager inputs the security policies relevant for a particular audit initiated by the policy
enforcer, and ensures that the policy enforcer is not overburdened with unnecessary security poli-
cies. The policy manager further uses regular expressions to store policies and extract them from
the database based on a policy request. The resource management function inputs the current uti-
lization of resources to the policy enforcer, and allows it to run its audits and assurance mechanism
when the resource utilization is low. Furthermore, the fault management function provides routine
fault reports to the policy enforcer. The policy enforcer in turn checks if those faults were related
to security incidents, and filters relevant information to the core IDS for further processing.

4.5.2 Security Goal Translation function

In order to address the security requirements provided by the infrastructure service user, the CloNe
security architecture utilizes the security goal translation function as its backbone. The security
goal translation builds on the goal translation function described in Section 4.2.2, and includes se-
curity specific functionalities and utilizes a security analysis engine. The infrastructure service user
provides its security requirements embedded in the original service request, which are forwarded
through the infrastructure service interface and transmitted to the infrastructure service provider.
The generic infrastructure service user request translation process utilizes three processes, namely,
service request, optimization, and monitoring, and is described in Section 4.1.

The monitoring process requires close interactions with the auditing and assurance function,
and the fault management function, and ensures that the deployed resources adhere to the desired
performance and security objectives. Provisioning of security objectives should not lead to per-
formance degradations, and vice versa, which require close interactions between the security and
management functions. The auditing and assurance function utilizes a policy enforcer described in
Section 4.5.3, which assures the implementation of the security policies on the underlying CloNe
infrastructure. These security policies can be appended on the fly with respect to the security
requirements specified by the administrator and the infrastructure service user. If there is a con-
flict between a security requirement requested by the infrastructure service user and a security
policy specified by the administrator, then the latter is always given preference. In such a scenario,

SAIL Public 55

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

the monitoring process triggers a re-optimization process, in order to detect whether the affected
security policy can be adhered to, by generating alternate provisioning(s) which will not conflict
with the given security requirements of the infrastructure service user. In case of multiple such in-
stances, a pareto-optimal provisioning is selected. However, if no such provisioning is possible, the
infrastructure service user is notified about the conflict, and the inability to process his requested
security requirements.

The security goal translation function utilizes a security analysis engine, which is a part of the
SIEM based IDS and is described in Section 4.5.1. The security analysis engine accepts the security
incidents detected by the core IDS and is responsible for raising security threats. These security
threats are transmitted to the security goal translation function. The security goal translation
function prevents provisioning of any resource which is currently affected by a security incident,
and keeps a log of frequently affected resources. These resources are in turn given a lower score
by the goal translation function, and are not used for high priority service requests. Moreover, the
information regarding faulty resources is transmitted to the auditing and assurance function for
in-depth security analysis of the affected resources.

4.5.3 Auditing and Assurance function

In order to address the security challenges raised by isolation and virtualization management, an
auditing and assurance function has been designed. It comprises of three sub-functions, namely, a
TPM based auditing function, a CloudAudit [29] based assurance function, and a policy enforcer.

The TPM based auditing function attests the geographic location of the physical resources
provisioned to the infrastructure service user. For example, when an infrastructure service user
specifies a desired geographic location, where its resources need to be hosted, the location constraint
is translated by the security goal translation function and forwarded to the auditing and assurance
function. The auditing and assurance function invokes the TPM based auditing function [3], which
then verifies the actual location of the deployed resources with the desired geographic location given
by the infrastructure service user.

The CloudAudit based assurance function is responsible for verifying that the deployed
provisioning match the given security requirements. Moreover, any of the CloNe entities, namely,
the infrastructure service user, infrastructure service provider, and the administrator can invoke
the assurance function and verify whether the security mechanisms functioned properly during
a specific interval of time. The assurance function is especially critical of any security breaches
which are detected by the core IDS deployed by the SIEM based IDS. The security breaches
are logged along with any additional information that is received from the security goal translation
function. The security goal translation function transmits faulty resource information, which is then
correlated with the results of the SIEM based IDS, and its own findings. The assurance function
builds on top of the CloudAudit assurance interface [29], customized for the CloNe infrastructure.
The CloudAudit interface includes a core framework [73] for management and governance of the
cloud architecture, which enables the entities to manage and verify the compliance of the deployed
architecture with respect to the given policies. Moreover, the assurance mechanism also comprises
of a risk management function, which allows risk analysis of infrastructure service providers and
administrators, risk assessment of provisioned resources, management of resources, and generates
resulting security policies with respect to the given security requirements. The risk management
function supports the security analysis engine which is a part of the SIEM based intrusion detection
engine. The security analysis engine is also responsible for accepting security incidents and raising
security threats after computing individual risk scores for all security threats. The security analysis
engine accepts the inputs from the risk management function, and correlates its results with those
of the risk management function. Any discrepancies result in a detailed re-computation of the risk
scores. The resulting security policies are transmitted to the policy manager utilized by the SIEM

SAIL Public 56

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

based IDS. The policy manager matches these given security policies, with its generated security
policies and checks for any discrepancies. Any discrepancy results in a detailed security policy
regeneration process based on the given security requirements of the infrastructure service user.

The policy enforcer is responsible for ensuring that the security policies, set by the security
administrator, are adhered to by the provisioned resources. The policy enforcer maintains a central
Extensible Markup Language (XML) file which stores the security policies, and uses Atom [74]
for maintaining the policies as individual feeds. Each security policy is composed of a number of
components, for example, the issuer, the permitted roles which can access resources, the permitted
resources, the access permissions, and exceptions. Each component is implemented as an entry and
has an extensible set of metadata that can be attached to it for further extensibility of security
policies.

4.5.4 Identity Management

Figure 4.3: Identity provisioning using a central Identity provider

An identity management framework has been developed for CloNe, addressing the requirement of
identity management as described in Section 2.6. It is capable of identity provisioning, creating and
maintaining access control policies, and authentication of legitimate infrastructure service users.

Identity provisioning acts as an integral part of the identity management function, as it aids
in the overall objectives of the framework, namely, authentication, authorisation, and compliance.
Identity provisioning in the CloNe environment enables provisioning (creation and maintenance)
and de-provisioning (removal) of user accounts (user identity, user role). In order to achieve au-
tomated provisioning and de-provisioning of user accounts, native SPML adapters are employed
at the infrastructure service provider side. In a typical provisioning scenario, the infrastructure
service provider identifies that an infrastructure service user requires access to a particular re-
source. The infrastructure service provider contacts the administrator, which then performs an
SPML based transaction to create a user account for the requesting infrastructure service user.

SAIL Public 57

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

Upon successful creation of the user account, the administrator returns an SPML success response
to the infrastructure service provider. In a typical de-provisioning scenario, the access rights of
an infrastructure service user to a particular resource or resource set is removed and the relevant
account information is deleted by the administrator. The authentication of service users and their
respective access rights for the underlying virtual resources are handled by the access control policy
function (Section 4.5.5). The compliance of the identity management framework is managed by
the auditing and assurance function (Section 4.5.3).

The CloNe use cases [4] and architecture (Chapter 2) warrant the need for an enterprise-centric,
and not a user-centric identity management function. The resource delegations are handled by the
infrastructure service provider and the administrator, and are kept transparent from the infras-
tructure service user. This results in information hiding (both between the infrastructure service
providers, and between infrastructure service providers and infrastructure service users), and also
hides the entire resource delegation chain from the infrastructure service user. This in turn pro-
motes privacy and anonymization of the participating entities.

Figure 4.3 depicts the identity provisioning by using a central identity provider, which enables
user-centric provisioning. A central identity provider, similar to the one use used by User Managed
Access (UMA) [75] and OAuth [76] needs to store information on identities, and credentials of all
the involved parties. Moreover, it allows unique identity provisioning within the CloNe ecosystem.
However, all parties must trust the central identity provider, as it results in a single point of failure.

Figure 4.4: Domain-wise Identity provisioning

Figure 4.4 depicts provider-wise identity provisioning with resource delegation between multiple
providers. In such a scenario, each infrastructure service provider manages identities and credentials
of its infrastructure service users, and ensures a unique identity for each participating entity in their
respective provider. The primary advantage is the lack of a single point of failure, but it requires
a trust relation between providers. The CloNe identity management solution and the core access
control function utilize provider-wise identity provisioning due to the lack of a single point of failure,
and its seamless integration with the existing CloNe architecture. Table 4.2 compares the identity
management mechanism used in CloNe with other user-centric mechanisms, namely, OAuth and
UMA.

SAIL Public 58

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

Table 4.2: Comparison between different identity management mechanisms

CloNe identity management mechanism User-centric identity management mecha-
nism

No external identity provider

• Prevents service provider lock-in

• Causes additional load on the infras-
tructure service provider for authorisa-
tion

External identity provider (IdP).

Low complexity due to simple policy
logic/structure and clean security architec-
ture.

Low complexity due to inherent design.

Support for nested groups of infrastructure
service users and resources without overcom-
plicating security policies.

Nested groups and role hierarchy realization
is hard to implement due to its design.

Authorisation discovery, especially for cases
involving multi-level delegation is easier as
the authorisation manager employs an autho-
risation prover to determine authorisations
with a subject.

Authorisation discovery becomes tricky, es-
pecially in cases involving multi-level delega-
tion.

Supports both user-centric and enterprise-
centric identity management and allows easy
switching between the two.

Only supports user-centric identity manage-
ment.

4.5.5 Access Control

In order to address the security challenges raised by information security and virtualization man-
agement, CloNe has developed an access control policy function. The access control policy function
forms the backbone of the identity management function, and is responsible for determining whether
an infrastructure service user is allowed access to a particular resource. The access control policy
function utilizes an authorisation logic [77] which enables fine-grained control of virtual resources
managed by the administrator. The authorisation logic manages access policies, which are defined
by the respective resource owners. The authorisation logic of the access control policy function
utilizes an authorisation prover, which ensures the sanity of access control grants and prevents
the circular reference error from occurring (circular reference is a series of references where the
last object references the first, resulting in a closed loop). Furthermore, it executes authorisation
proofs by utilizing access policies, which validate the user access on a specific resource. The au-
thorisation proof can involve infrastructure service providers and administrators spanning a single,
or multiple administrative domain. The current section will cover the authorisation logic and the
core implementation details of the access control policy function.

The authorisation logic enables fine-grained control of the virtual resources which are managed by
the administrator. The authorisation check of an infrastructure service user’s access to a resource
involves chaining together individual virtual infrastructure delegations and access right delegations.
Each administrator, infrastructure service user, and infrastructure service provider has the ability
to delegate the resources under its control to any other participating entity. The authorisation
logic is used to encode individual resource delegations as authorisation grants, and chains them
together to verify whether a party is authorized to access a resource. Any party that is responsible

SAIL Public 59

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

for specifying grants is termed as an issuer. There are two types of permissible grants in the
authorisation logic, namely, authorisations and name definitions. Authorisations cover all resource
delegations which occur from an issuer to an issuing party. For example, an Infrastructure service
provider ’AISEC’ might authorize an infrastructure service user ’A1’ to use the resource ’alpha’.
Moreover, a name definition grant specifies that according to the issuer, a name is defined as another
name or a user. For example, AISEC grants : alpha = foo@aisec.fraunhofer.de, implying
that AISEC defines the name alpha as foo@aisec.fraunhofer.de. Furthermore, names can be
multiply defined, which allows them to represent groups. The details of the syntax and extent of
these grants are described in [3].

The access control policy function utilizes the authorisation server that receives grants from is-
suers and can perform authorisation proofs. In addition to authorisation proofs, the authorisation
server uses its inherent logic to control access to its services, for example the privilege to grant access
to the authorisation server. Furthermore, the authorisation server implements a global authorisa-
tion service, which can span multiple administrative domains. The details of the authorisation
server is given in [3].

SAIL Public 60

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

5 Elaboration of the Inter-Provider and Service
Layers

5.1 Main Concepts

5.1.1 Declarative vs Procedural Knowledge

Procedural programming builds on the idea of procedure calls, which are invocations of a series
of computational steps that need to be completed in a given specific sequence that defined the
program. In logic programming a program is a set of premises and computation is executed to
prove candidate theorems trying to determine on what the problem is, rather than on how to solve
it. Prolog-like logic programming languages are executed as goal-reduction procedures. Therefore
clauses like A : −B1, ..., Bn. have a dual interpretation, both as procedures (to solve A, solve B1 ...
Bn) and as logical implications: B1and...Bn implies A. Therefore, declarative programming serves
two purposes: making sure that programs are effective and efficient (procedural) and ensure that
programs are correct (declarative).

Model-driven development (MDD) is a methodology in software engineering that focuses on the
creation and the processing of models. Models aim at a high level of abstraction. Therefore, models
often have a rather declarative and a less imperative character. The model is the contextualised
into a Domain Specific Language and expressed in a concrete language, which tends to be more
imperative in nature than the Model.

From a bird’s eye viewpoint, each provider can be conceived as a peer that exchanges information
with other peers so that these enact “whatever is needed” for that thing to happen. In other words,
they communicate their peers what needs to be done, not the low level specifics on “how to make
it happen”. Thus, MDD or Procedural programming approaches are taken into our architectural
design, where we use a high level declarative language so that the providers can know what is
required from them in a higher abstraction level and derive from there how that is actually done
in their specific context (e.g. concrete set of technologies being employed). This is exemplified
in Figure 5.1, where the peer entity representing provider 1 in the federation receives a high level
Model specification indicating what is required (but not how it is going to be done). This is resolved
by the provider by applying any internal representation format at the preferred abstraction level
(which may be technology dependent). This intermediate internal representation is finally enacted
by issuing a series of commands that indicate “how” the request is actually enacted. This realisation
may imply that it cannot be done locally and needs to be delegated into another peer.

5.1.2 Distributed Computing Model in CloNe

Centralised models for system management present several inconveniences that make them poorly
appropriate for large-scale infrastructures spread across different organisational and geographical
domains. In our specific setting a variety of resources (e.g. a block in a storage system) may need
to be handled. These elements can leave, join, and fail in a dynamic manner. This large scale
and fine granularity of elements to be controlled is nearly impossible to manage centrally and does
not present failure-tolerance. In the light of these requirements, the presence of an inter-provider
coordination/broker/orchestrator is not feasible. Therefore, we were motivated by the nature of

SAIL Public 61

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

Figure 5.1: Concretisation of the high level declarative model specification into procedural domain
and technology specifications

our requirements to adopt an efficient decentralised solution that can dynamically adapt to ever
changing conditions of a really large number of objects/resources at a fine grained level (e.g. just
picture the huge number of virtual NIC in the VMs of all the data centres in the federation).

In decentralised organization a fundamental challenge in creating and managing a globally decen-
tralised inter-provider environment is keeping connectivity between various untrusted components
that are capable of self-organization while remaining fault tolerant. While wide-area scalable over-
lay of distributed clouds have recently been proposed [78], they still do not deal with the huge
problem of creating a heterogeneous inter-provider infrastructure where cloud providers and ISPs
can interact with each other. However, the main architectural principles or distributed computing
for large scalability remain the same.

This is why we also took a peer-to-peer approach to build all the elements for inter-provider
communication, coordination and request realisation. Take into account that every peer entity
represented in Figure 5.2 is actually performing several roles at the same time: it is the access point
for requests from other providers and the source of requests for other providers when something
cannot be done with the resources at hand locally. These requests include handling joining of new
peers (providers), deal with capacity advertisements and, of course, requests infrastructure services
from other providers (e.g. VM deployment or endpoint connection). Note that in Figure 5.2 a
full-mesh network has not been created on purpose to reflect the variety of business relationships
held by the participants in the inter-provider scenario.

5.1.3 The Distributed Control Plane

Having a general idea on the specifics of the computing model assumed by our system, we present
the main functions that make the system workable, scalable and failure-tolerant, while coordinated.
We refer to this set of functions as our “Distributed Control Plane”.

5.1.3.1 Provider Federation Formation and Capability Discovery

Peer to peer literature is abundant in how peers join and depart from the federation. When
attempting to join a P2P network, specific bootstrapping or rendezvous protocols may be required
to communicate with other nodes and finally join the network. Furthermore, to add complexity to
the global picture, these protocols and configuration requirements may dynamically change as the
infrastructure and membership of the P2P network evolves. Therefore, there is a need to be able
to dynamically inform a newly joining node of the required protocols and configurations.

SAIL Public 62

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

Figure 5.2: Bird’s eye view of the system employed for inter-provider coordination.

In our high level specification, we will assume here the simplest scenario, which is that any
given provider (peer) will join by means of connecting to another known peer (provider) in the
system. This situation reflects the reality of ISPs and data centre operators, which are inherently
joined by means of their actual networking constraints. The key element exchanged by joining
providers is that of its real capacities (e.g. large scale compute power; or WAN connectivity with
guaranteed QoS between country A and B) specified in a high level language described by a shared
inter-provider model all the providers need to understand.

Upon receiving this capability description, the receiving provider may adopt two different strate-
gies: 1) relay the advertisement of that capacity and 2) integrate that capacity into its own offer
(adding a profitable margin) and re-sending its capacity to its neighbour as an update. This latter
strategy may be convenient if the provider wants to outsource part of its capacity (hybrid cloud).
The former strategy is more appropriate, for instance, in the case of a network operator connecting
several data centres. Since the network operator is not directly competing with the data centres, it
is in its best interest to advertise as many data centres as possible so that its network can be used
as a link between any two of them (thus increasing its benefits).

5.1.3.2 Delegation of Implementation

Delegation of implementation is a service layer activity. A given provider may decide not to
implement a client’s request itself, but delegate part of the (or the whole) request to another
provider. This fact may be hidden from the requester at the provider’s discretion. Following
the declarative vs. procedural discussion above, the idea of delegating responsibility on the final
enforcement of “what needs to be done” is inherent to our architecture. Delegation follows naturally.
If a provider cannot fulfil “what” is asked or it does not have the have the means to resolve “how”
to do it (e.g. does not use a given protocol or hypervisor).

SAIL Public 63

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

5.1.3.3 Name (Reference) Resolution

A naming scheme is a key component of any distributed system. Names (references) are mapped
to objects or their locations and vice versa using a name resolution service. Probably, the most
well known example of such a system would be the Domain Name Service (DNS). Unfortunately,
DNS is not enough for handling resources at a fine granularity level (e.g. a VM NIC) in a highly
dynamic environment where the resources pop up and disappear in minutes. In general a name or
reference may have the same Common Internet Scheme Syntax of a URL (in the 1738 RFC sense).
This naming mechanism may be modified by the specific needs of the provider. When a resource
is delegated to an external provider, the other provider may be using a different scheme that is not
compatible and, therefore, a mapping is needed.

When the resources need to be accessed (e.g. when a link needs to be negotiated) these abstract
references are resolved in order to find the actual location of the resource. The resolution of the
references may occur in two differentiated manners:

• There is a DNS like hierarchy that resolves the abstract name into a concrete one. This
approach presents the typical limitations of a centralised service and cannot cope with the
dynamism required in large settings such as the one depicted by CloNe.

• The resolving provider follows the references (think of each reference on each provider as a
pointer in C programming) and asks all the providers in the delegation chain until the one
that finally instantiated the resource responds with the concrete (routable) locator. This
approach has the advantage of letting providers use a wide variety of schemes of their own,
with no need for any synchronisation of neither naming nor global entities. As a down size,
this mechanism requires following an undetermined number of hops until the final “pointer”
is found and the reference can be materialised.

• Pure peer to peer naming mechanisms that similar to the distributed hash table employed by
systems such as Chord or Pastry. In this inter-provider setting, every object in every provider
will use an ad hoc naming mechanism and this local name will be hashed to produce a N-bit
peer identifier. The DHT is then employed to retrieve the location of the host publishing
that identifier, the host where the required resource can be found. There are however some
significant differences when compared to Chord or Pastry. These systems store the indexes of
objects (hashes) at the node whose identifier is closest to the hash, and the routing algorithm
is designed to find that node. In contrast, in our approach the hash is stored on the node
that publishes the identifier. A node will thus have as many entries in the routing system
as the number of identifiers that it publishes. Most DHT systems assume that only one
node publishes a specific index. In contrast, in our multi-provider scenario collisions are
indeed possible and multiple hosts could publish the same name. The internal index is in
fact composed of the N-bit hash of the peer (provider) name and a N-bit (resource) location
identifier, which can be derived from an IP address of the publishing node. Therefore, using
DHT techniques for naming and discovery of the location of resources (routing) prevents
from relying on a centralised (brokered or orchestrated) architecture that would pretty soon
prove poorly scalable in the case many resources were to be (un)published over relatively
short periods of time. Also, this prevents the system from having a single point of failure
that could cause a massive denial of service (resources not being found) with huge economical
implications for the service providers and their clients as well.

5.1.3.4 Message Delivery

While the proposed naming mechanism solves the “routing” of the messages and help to locate
the “Object resource”, an actual messaging system is required. Knowing the name of the required

SAIL Public 64

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

object (e.g. VPN end point in VPN server) is enough to locate it and invoke its exposed services.
Once the name(reference) to network endpoint (e.g. protocol, IP and port) mapping has been
resolved, one has to take into account that most of the messages will be sent in an end to end
manner, although the message may be diverted upon reaching an intermediate destination, due to
a possible delegation.

Other possible configurations are needed so that an object can be subscribed to updates in the
status of any other object located anywhere in the provider federation. Therefore, an asynchronous
delivery mechanism is obviously preferred to cope with the required scale of the system. One should
be aware that several objects may be interested in the status (or updates) another object may issue
(e.g. VMs processing the same data blocks in a read-only manner may want to be updates on
failure of the volume that contains the data blocks; or VMs communicating with each other via a
WAN link may want to be notified if the link fails).

In our setting each of the peers (providers) will present an element of the message service that
is capable of delivering messages to local resources or re-route a message addressed to an unknown
recipient.

5.1.4 Goal Translation

The entity that is in charge of understanding the logic specified in the high level declarative language
is the goal translator. This is one of the main inter-provider functions. Its basic elements are
similar to the ones for the intra-provider case detailed in Section 4. However, an additional layer
of complexity is added here: there are several providers in the picture. Therefore, one of its main
building blocks is a domain decomposer: an entity capable of handling a more procedural language
only, analysing the logic given by a new declarative request is required and making appropriate
decisions on exactly where different pieces should go.

This component may need to get the names referred to into the specification and resolve them
into something more meaningful, according to provider specific contextual information (e.g. a given
private range IP). The interpreter is also in charge of determining whether or not the specified
elements exist already (either in that provider or in a delegated from in another remote provider).
If the elements exist, the interpreter will make inferences on the actions that are actually needed
in order to reach the desired state (e.g. add a new data block to a previously existent VM or
connect it to a new virtual network in a remote provider). Once these inferences have been made,
the interpreter is in a right spot to start generating a more procedural format that the decomposer
can understand and map into two possible outcomes:

• a series of local calls in the provider-specific technologies (e.g. eucalyptus-type EC2 calls to
deploy a VM). This implies requesting actions from the local infrastructure services.

• a delegation request (just a service call in the declarative form) into a remote provider deemed
to be more appropriate for the whole (or part of the) request. This implies invoking the remote
APIs exposed by the selected provider.

In both cases, the interpreter is also in charge of handling messaging actors instantiated for the
requested elements (objects) so that remote or local elements can subscribe for updates on their
status. See Section 5.3.1 for a concrete implementation of this function.

5.1.4.1 Security Functions

This entity is responsible for ensuring that the virtual resources can only be accessed according
to the security policies specified by the CloNe entities is the access control function. The Goal
Translator may generate either a local call in provider-specific technologies, or a delegation request

SAIL Public 65

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

into a remote provider that is deemed to be more appropriate for the entire, or a part of the resource
provisioning. The latter is relevant for the inter-provider scenario, and requires the access control
function to manage the access to the resources with respect to the individual virtual infrastructure
delegations and access right delegations. The details of the working of the access control function
in the inter-provider scenario are described in Section 5.2.3.

Furthermore, all the supporting security functions, namely, SIEM based IDS, security goal trans-
lation, auditing and assurance, and identity management execute solely in the intra-provider sce-
nario, and ensure that the incoming remote request do not violate any security policies defined for
their respective provider.

5.2 Implemented Approaches to Inter-Provider Management and
Security

In this section we will present the most relevant elements of the aforementioned architecture that
have actually been implemented and demonstrated in or prototype. These have been selected since
they clearly illustrate some of the most required elements in inter-provider scenarios that place
CloNe beyond the state of the art. We also highlight the main limitations that will guide future
development of CloNe architectures and prototypes.

5.2.1 Object Location

As an example of message service, CloNe has implemented a message exchange framework called
Cloud Message Brokering Service (CMBS). From a technical perspective, CMBS is a solution for
exchanging messages between cloud providers and especially cloud networking providers.

CMBS is based on an Event Driven Architecture (EDA) where the events are given in the form
of messages. In such message-oriented system there are three distinct layers that could be used:
application layer (e.g. Java Message Service (JMS)), transport protocol wire layer with a broker
(e.g. Advanced Message Queuing Protocol (AMQP)) and a transport protocol wire layer without a
broker (e.g. ZeroMQ). In an attempt to reduce the number of single points of failure and to improve
the scalability of the system CloNe’s CMBS has fully relied on ZeroMQ for message exchange.

Exchanging information between cloud providers can have several patterns and can occur in
different ways like sending information to one or many providers, or sending information related to
a specific topic. To satisfy the Cloud networking requirements of the information exchange, CMBS
is based on a message exchange pattern that is structured by five layers:

• layer 1 - cloud provider discovery space: The role of this layer is simply to exchange infor-
mation about the type and characteristics of cloud providers. Each cloud provider who wants
to be a member of the CloNe DCP should advertise about him self through this layer. This
function is implementing part of the peer-to-peer discovery protocol outlined above.

• layer 2 - broadcast space: enables sending information to all known members of the DCP.

• layer 3.1 - unicast space: via this layer, a provider can send information to a particular list
of providers {X1, X2, ..., Xn} .

• layer 3.2 - interest cast: allows providers to send data about a list of topics {Y1, Y2, ..., Yn}
to all providers that are subscribed to this topic.

• layer 4 - uni interest cast: via this layer, a provider can send information about a list of
topics {Y1, Y2, ..., Yn} to a particular list of providers {X1, X2, ..., Xn} .

SAIL Public 66

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

Thus, by relying on proper message specification, we have built a decentralised architecture for
message exchange in CloNe. More details are presented in the deliverable D-5.3 Description of the
implemented prototype.

5.2.2 Link Negotiation Protocol

A virtual infrastructure specified in tenant request can span multiple providers, and in such cases
the individual ”pieces” of this virtual infrastructure within each provider’s administrative domain
needs to connect to one or more distributed ”pieces” in the other providers’ administrative do-
mains. There are several logical and physical entities that need to work together in order to
establish the connectivity that spans multiple providers. The actual connectivity between adminis-
trative domains needs more detailed information such interface addresses and agreement on routing
protocols which are not available in the original request exposed by the decomposer. A specific
domain-to-domain communication mechanism is required so as to enforce the actual communica-
tion.

Naturally, the link may cross provider boundaries, and therefore will make these connections.
For this purpose a Link Negotiation Protocol (LNP) was defined. This protocol is responsible for
creating one or more virtual links belonging to the same virtual infrastructure but may be spanning
multiple (usually two) providers’ administrative domains.

The protocol achieves the following high-level objectives:

• Simple and low level protocol agnostic

• Support of various transport network solutions (L2, L3)

• Agnostic to any particular networking implementation

After the completion of the protocol, bindings at three different levels are achieved between the
two infrastructure providers with respect to the link, namely

• Agreement on the link reference at the virtual infrastructure level.

• Agreement on a data transmission link for sending data from one domain to another. This are
already installed and configured by the service provider and include physical layer separation
schemes like Provider Backbone Bridging or MAC-in-MAC, or tunnelling schemes like IPSec
or GRE.

• Agreement on a logical link part spanning between two domains. This corresponds to virtual
link in the virtual infrastructure of the tenant and has a one to one mapping. The difference
is that a virtual link is unique only to the virtual infrastructure, whereas this logical link is
unique across the two domains in the negotiation process. For example VLANs may be used
for creating the logical link in which case the VLAN number is used for uniquely identifying
the logical link. The additional configuration parameters, such as interface addresses of the
two endpoints and a routing protocol in the case of an L3 link are negotiated on this logical
link.

LNP facilitates the creation, update and deletion of the logical links. More details of the link
negotiation protocol, including the various operations, parameters and its implementation in data
centres and WANs are described in detail in deliverable D-5.3 Description of Implemented Prototype
[3].

SAIL Public 67

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

5.2.3 Access Control

The access control function is capable of executing in an inter-provider setting, and is responsible
for an infrastructure service provider to delegate the implementation of its resources to other in-
frastructure service providers. Moreover, an infrastructure service user could himself be acting as
a provider to other infrastructure service users, or infrastructure service providers. The access con-
trol function ensures that the delegation request that has been transmitted into a remote provider
conforms to the respective security policies of each affected provider, and the individual virtual
infrastructure delegations and access right delegations.

Authorisation Service

Authorisation required to
interconnect infrastructures

Transformed by provider

Delegated to provider

Virtual Infrastructure
defined by User

Re-delegated…

Transformed…

These two do not know
who each other are

Re-delegated…

The top provider does not know
who the final providers are

Figure 5.3: Inter-provider infrastructure provisioning

Figure 5.3 depicts an inter-provider scenario, whereby an infrastructure service provider has del-
egated a virtual infrastructure amongst two infrastructure service providers. Each infrastructure
service provider further re-delegates their corresponding part. The infrastructure service providers
need to establish a link between their respective access points, in order to connect their infrastruc-
tures. This mechanism is described in [3].

5.3 Implemented Approaches to Service Layer Management and
Security

The service layer is largely based on existing cloud computing software stacks and interfaces. The
additional management and security functions at this layer are embodied in the goal translation
function.

5.3.1 Goal Translator

During its normal functioning, the goal translator module will end up invoking a series of functions
by the execution of procedural commands. This subsection describes one of the most relevant ones:

SAIL Public 68

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

the decomposer in the light of inter-provider scenarios.

Decomposer The goal of the Decomposer module is to convert abstract or high level requirements
into concrete actions to be performed on physical resources. Using a virtual infrastructure high-level
description (a VXDL file) as an input, this module makes the translation from the VXDL request
to a set of nodes and link requirements and allocates them to the available physical resources. It
makes the allocation by sending messages on the providers’ interfaces. Providers can be data centre
operators or network operators.

The different providers (data centre operators or network operators) are registered on Cloud-
Weaver and specify some of their physical specificities (for example, their geographic position).
The VXDL request is split according to the requirements on the physical resources and configura-
tion messages are sent to the providers matching the requirements.

The allocation process, inside the decomposer, maps a graph of virtual resources on a graph of
declared network and data centre resources.

As an individual provider might not have enough resources to implement the user request or the
user request might specify the use of different providers, it is necessary to be able to delegate the
deployment to multiple providers.

To provide this feature, the decomposer can automatically generate the appropriate (interme-
diate) requests to network providers to instantiate one (or several) FNS (see Section 2.3.1 for a
reminder). Once they are requested and later created via the infrastructure service interface, com-
munication will be possible between the different data centre providers involved in the user-request.

5.4 Load-Adaptive Deployment

Our leading vision is to optimise geographically distributed application deployment, so that QoEs
like application responsiveness are improved. In using a poorly responding application the user
is less efficient in his work, while waiting for the application’s response to his interactions. A
significant part of the delay experienced is the round trip time for a request between the user’s
computer and the application’s instance or server in a cloud. This round trip time can be reduced
by answering requests closer to the user. Only such a geographically distributed deployment will
reduce the round trip time and improve the responsiveness.

The deployment close to users will also reduce the link congestions in central networks. This
argument is borrowed from Content Distribution Networks (CDNs), where caches are located at
the edge routers of the network. With cloud computing, we can allocate resources for application
or caches at different locations.

In the near future we foresee a huge amount of potential cloud locations and data centres in
which our application can be deployed. We face two issues in order to exploit the benefits of a
geographically distributed deployment. At first, we need to select those appropriate locations,
which for instance are close to the users. Secondly, we need to be able to deploy our application in
an elastic and distributed way.

A dynamic selection of appropriate locations is critical to the QoEs and to cost related to the
deployment of the application. User demand usually fluctuates within a day, when people arrive
at work or home. When users start to use an application deployed in the cloud, load needs to be
controlled and the appropriate service needs to be expanded to deliver the best service to customers.

SAIL Public 69

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

SiteBSiteA
Web-
server

Logic

DB

Logic

Web-
server

Web-
server

SiteC

Figure 5.4: Example of a scaled geographical distributed three tier application.

In traditional centralised deployments, most of these effects go down in the overall average usage.
But in a geographically distributed deployment, these effects occur at different sites at different
times. In a static deployment, we can only predict but do not know the exact usage pattern in the
future. As a result, we will most probably suffer from a bad fit of currently allocated and needed
resources at different locations. Either we have not enough resources resulting in low QoE or we
have too many resources resulting in a waste of resources.

How can we ensure a good QoE without the high cost of over-provisioning? The only way is to
enssure there is a dynamic adaptation of the application deployment according to the current usage
pattern. CloNe enables parts of the application to be deployed in an elastic inter-provider cloud
consisting also on network locations more central than the classic edge data centres. If at some
point, some users do not need the application anymore, then some of the parts of the application
(either in the network or in the edge data centres) may be removed.

5.4.1 Need for Dynamic allocation and Load Balancing

Typical applications are compositions for distributed components. As an example, Figure 5.4 shows
a typical three tier web-application, using a web-server with a logic-server and a central database.
The arrows indicate which components are communicating with each other. Users are served by
the web-server. The lower right user illustrates a special case: He is not served close by. An extra
web-server for him at SiteC is too expensive.

Such a system implements two separated capabilities:

• The Elasticity describes the capability of a Virtual Infrastructure (VI) or application to shrink
and grow upon request. This configuration is done without human intervention or support to
write configuration files or restart services. A VI embraces the allocated compute, storage,
and network resources. For example new instances of the application are integrated in the
overall system and closing instances lead not to data lost. Increase storage capacity will be
utilized and removed computing capacity (CPU) will not crash the application. For example,
a FNS is automatically setup between a new and running VMs,

• Secondly, the adaptation is a reactive system. Decision logic provides a new deployment
configuration upon monitoring data. For a distributed application, online performance data
provides the input to decide where to place application’s VMs.

SAIL Public 70

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

Infrastructure
(CloNe)
Domain

Application
Domain

Application
VM Manage-

ment

Compute
Resources

Network
Resources

Compute
Resources

(1)

(2)Goal
Trans-
lation

InfrastructureManagementElastic
Application

Application
Steering
Interface

Placement Algorithm

Figure 5.5: Architecture extensions and essential components.

5.4.2 A Possible Implementation Approach for Dynamic Adaptation

These two capabilities are implemented in 4 parts, as shown in Figure 5.5. The Figure depicts parts
of the overall architecture described in this deliverable, put in action for dynamic load adaptation.

Elastic Application An elastic application is capable of reacting adequately on changes of the VI.
Additionally, the application has to provide online performance data to the Management
component.

Management This component decides upon performance, monitoring data, and adjusts the VI
accordingly. The adjustment is based upon a Placement Algorithm. The adjustments are
applied through Infrastructure providers. The running application is updated about the
changes.

Infrastructure The different infrastructures create, manage, and connect the virtual compute and
network resources of a VI. CloNe is capable of supporting anything needed.

Placement Algorithm The algorithm collects application’s online performance data and infrastruc-
ture monitoring data as the input. From this input the algorithm computes the new layout
of the VI: “At which location how many of which VMs are running.”

In the remaining part of this section we will describe these 4 components in more detail and
how they relate to other parts of the SAIL project spanning beyond the scope of CloNe. We offer
a more detailed explanation on how these components work and what their implementation-level
dependencies are. Finally, we show that such design is actually feasible in our prototype, adding
weight to the validity of our architecture and its realisation potential.

Elastic Application

An elastic application is also a distributed application, which consist of distributed components or
instances (in VMs) realizing the service or functionality of that application. An elastic application
is seen as untouched by end users, while the amount of available resources changes. This appears on
two different levels: either new resources like VMs are added/remove or old resources like storage
are increased/decreased. Obviously, simple stateless web-server are elastic. Such applications can
already be scaled up and down with Amazon’s CloudWatch[79].

SAIL Public 71

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

Using the same technology for stateful applications will cause malfunction. They lose their state
information, business or user data, upon scaling down and shutdown of instances. Traditional
applications cannot handle dynamic adjustment of resources, like storage, memory, or amount of
CPUs. Only the application manages the available resources and has to decide how to use them
efficiently. Thus the application needs to be informed about changes of available resources and
amount of resources. These application level adjustments have more potential as guest operating
system or hypervisor mechanisms.

For simple applications, newly launched instances do not need context information like “which
other instances are running”. Other applications are similar to the three tier application described
at the beginning of this section which includes interactions between different components. We need
a way to share or retrieve context information. In special cases like a virtual private network this
can be done by broadcast. In other situations, DNS resolution with customized DNS entries will
help. This is an announced Amazon service, Route 53 [80]. However, these solutions will only work
in certain situations. A more flexible way is to configure the VM after it is booted and eventually
before the application is started. This way context information can be embedded in the application
configuration or a running application can be reconfigured.

As a generalization, a VM/application can be informed or triggered about any event related to
the changes of their VI: upon start, resume, migration to (re)configure the application, upon stop
or suspend to rescue the state. Technically, the VM and the application are informed via a steering
interface. Either the application can implement this interface or a steering daemon is installed as
separate software. The daemon has to launch upon start and mediates between the application
and the external component using the steering interface.

In our case, the Management component informs the application through the steering interface
about changes of their VI, which is shown in Figure 5.5 as arrow (1). The Management component
which computes the VI has all necessary information about the VI available.

Additionally, the application needs to provide online performance data, so that the management
component can decide upon an appropriate placement. Either the application or the steering
daemon, which access application’s data or logs, has to provide such data. In our case, this results
in a two-way communication between the VM/application and the Management component.

Management

The Management component gathers performance data from the application, monitoring data from
the infrastructure and discovers potential cloud location. Upon this data, the Placement Algorithm
decides, at which cloud location how many resources need to be allocated for the application. The
actual decision logic and optimization goal is encapsulated in the Placement Algorithm, so that
the Management component serves as a generic frame.

The Management component can be seen as a high-level inter-provider goal translator in the
context of the SAIL architecture. The higher level is the result of an abstract description of the
application as a kind of template and an abstract optimization of the placement of individual VMs
(realized by the Placement Algorithm). In contrast a lower level goal translation contains every
VM/application instance and every connection (FNS) to be allocated, which for example can be
specified in VXDL (c.f. Section 5.3.1 Goal Translation). The Management component implicitly
does a low-level goal translation and interacts with the Virtual Infrastructure Provider directly, or
a low-level goal translator like CloudWeaver is intermediary utilized. Because of this blur, both
functionalities, the high-level and low-level goal translation, are drawn side-by-side in Figure 5.5.

SAIL Public 72

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

Location A

Location C
Location B

Users
S,T,U 1

2 3

1

2

3

Users
X,Y,Z

Initial
Situation

Detect
high load

(a) Detection of high load

Location A

Location C
Location B

Users
S,T,U

Users
X,Y,Z

1

2 4

1

3

4

2

Load-
Adaption

Spawn
new

Cache

(b) React by spawning a new cache

Location A

Location C
Location B

Users
S,T,U

Users
X,Y,Z

1

2 4

1

3

4

2

New
Situation

Detect no
utilization

(c) Detect low utilization

Figure 5.6: Scenario C: Load-adaptive NetInf deployment

Infrastructure

The existing part of the CloNe architecture implements the necessary features to realize such an
inter-provider deployment. The Management component interacts with a separate broker, goal
translator, or directly with the virtual infrastructures via the north bound CloNe interfaces. CloNe
does the necessary inter-provider negotiation internally, so the Management component is left out.

Placement Algorithm

The Placement Algorithm is very specific to the optimization goal, the application type and the
data provided. Currently, two concrete incarnations are analysed more closely:

Response Time For interactive (computing intensive) applications, like the video cut application,
the responsiveness of user interactions is important. An interaction lag renders the application
nearly useless. For this an appropriate algorithm is in development, where cloud locations
close by users are favoured.

Inter-provider Link Both CDN or NetInf provider minimizing their costs. Transfer costs (for ex-
ample across interprovider links) are saved by having a cache on the other site, so data has
to cross only once. Together with WPB, we envision a dynamic allocation of such caches.
This way, the system can adapt to the location from where the downloads are started. As a
result, no upfront wide area cache deployment is necessary.

While the architecture is in place and much of the prototype development is done, the research
for the Placement Algorithms are still in progress.

5.4.2.1 Proof of the Feasibility of the Proposed Load Adaptation Features

The system design was prototyped to test an adaptive NetInf deployment across data centres.
While the different scenarios are described in detail in Chapter 4 of D.A.9[62], the last scenario c
describes the load-adaptive placement of NEC NetInf Router Platform (NNRP) nodes.

We envision a situation where requests for content are already served by the nearest content
cache (Location A and C). Customers from Location C are now requesting content, which is not

SAIL Public 73

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

available at Location C but can be served from Location B. As a result, a lot of (inter-provider)
traffic is caused (Figure 5.6(a)). CloNe can detect the high load on the inter-location link and react
with a pre-defined, NetInf-specific action. This action can be part of the deployment request from
the NetInf provider. In our example this action is to add a new cache in Location C (Figure 5.6(b)).
As a result the requested objects will also be cached in Location C. After some time no further
inter-provider traffic is produced (except for updates). Because CloNe not only monitors the load
on the inter-provider links but also the CPU load of the VMs, it now detects that the cache in
Location B is no longer required (Figure 5.6(c)). Again using a predefined policy, this un-utilized
node at Location B is shut down to save cost.

SAIL Public 74

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

6 Application use-cases played out

The infrastructure services provided by CloNe are meant to be used by a tenant. In general
terms, the tenant is a person or entity that wishes to deploy virtual infrastructure with specific
requirements. On top of that virtual infrastructure, an application or a set of connected applications
will be deployed. The application is provided, deployed and maintained by the tenant. Nevertheless,
the Infrastructure Service Provider must abide to infrastructure requirements provided by the
tenant, which are obviously application specific requirements.

The objective of this chapter is to show how the tenant interacts with the CloNe service, and
how the internal components of the architecture are used to implement the service demanded by
the tenant. The two scenarios of CloNe, namely Dynamic Enterprise and Elastic Video Distribu-
tion will be used to show case two ways in which the interaction with the tenant may happen.
Although the initial placement of the nodes follows the same steps in both cases, adaptation to the
application elasticity in the second use case needs further interactions and information exchange
between infrastructure provider and decomposer. While the Dynamic Enterprise use case focuses
on the integrated provisioning of on-demand networking services connecting IaaS, the Elastic Video
Distribution focuses on the automated scaling of an application on the infrastructure to meet a
specific objective. We described the main actors in CloNe while describing the overall architecture
in the second chapter. While describing the use cases below, these roles are played out.

6.1 Dynamic enterprise

The dynamic enterprise scenario is about on-demand provisioning of computing and networking
resources across data centres and networks. Enterprises need not only an easy way to add and
remove resource (both computing and networking); they may need to extend their business systems
to new remote locations (either temporarily or permanently). Moreover, the enterprise tenant
expects a higher level of reliability, performance, security and isolation. The global presence of
large enterprises implies that CloNe should be able to work across different providers.

CloNe enables the dynamic enterprise scenario by providing IaaS from data centres integrated
with an FNS service provided by a network operator. Current existing solutions focus on the
provisioning of resources within a data centre. CloNe is able to integrate wide area networking
resources into the equation, providing an end-to-end solution.

6.1.1 Tenant interaction

The steps the tenant should go through to successfully deploy its application on the CloNe infras-
tructure are:

• Identification of application to be deployed on CloNe

• Investigating how the application connects to rest of system

• Specification of a virtual infrastructure including target application

• Sending request for virtual infrastructure to Infrastructure Service Provider

SAIL Public 75

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

• Receiving response to request, acknowledging infrastructure deployed

• Deploying applications and connecting existing systems

• Requesting different amount of resources

The first step of the process consists on the identification of the application to be deployed on
the infrastructure. Applications with varying demand are very suited since that will yield lower
CAPEX costs. There are likely business reasons that will influence this process, such as liability,
security, amongst others. It is also possible to use the CloNe solution to provide WAN services
only. That is the case when CloNe is used to connect two existing private data centres located in
the enterprises premises.

Before deploying its infrastructure on CloNe, the enterprise tenant must have a good understand-
ing of how the target application interacts with existing systems. Typical enterprise applications
are tightly connected to other internal systems (e.g., e-commerce connected to billing, order han-
dling, stock management, delivery system, and suppliers). Rarely an enterprise application runs
stand-alone without any dependencies. The tenant must know how those systems are connected
(topology), the type of connectivity utilized (addressing), the average amount of data exchanged
(capacity), and other application requirements (e.g., maximum delay between servers). It is as-
sumed that to minimize application impact, the application will have the same type of infrastructure
as it did when running it internally.

Based on information gathered in the previous step, the tenant is then able to specify the desired
virtual infrastructure. The virtual infrastructure is specified using a descriptive language such as
VXDL or a graphical user interface intended to generate such a file. VXDL allows one to specify full
virtual infrastructures composed of virtual nodes and links. Temporal changes in the infrastructure
can be specified, with demand changing through time. Specific legal requirements are included,
e.g., need to execute a service under a given jurisdiction. This file is an SLA between the tenant
and the Infrastructure Service Provider.

That file is then sent to an Infrastructure Service Provider, which verifies if the request can be
satisfied. It may be necessary to use the concept of Delegation to provide the full infrastructure to
the tenant. Regardless, that will be transparent to the tenant. When the process (Section 6.1.2) is
finished, the tenant receives a response, if positive it includes the Virtual Infrastructure Identifier
that is used in further requests. When the response is received, the infrastructure is up and running
and the tenant should be able to use it.

The next step is the deployment of the actual application. If the virtual infrastructure is com-
posed of standard types of virtual machines provided by the ISP (e.g., a Linux VM, kernel X.Y.Z),
the tenant can probe CloNe to obtain IP addresses and credentials to access these servers. With
access to that virtual machine the tenant should be able to copy and install any type of software
needed. However, if the tenant had specified the use of private owned VM images, those should
be first uploaded. Once uploaded, it should be possible to notify the CloNe infrastructure of its
availability.

The tenant should make sure that any private owned part of the infrastructure abides to the
specification sent to the ISP. That is, existing parts of the service that will interact with the cloud
should be accessible and connected to the attachment points specified in the file.

At this point, the tenant application should be running and connected to the rest of the system.
If changes are to be performed, the Infrastructure ID should be used. The customer shall be able
to change any part of the infrastructure, including, changing capacity of links, changing topology
of the infrastructure, and changing type of connectivity utilized, amongst others. This is done by
submitting an updated VXDL file that specifies the new needs of the tenant.

SAIL Public 76

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

6.1.2 Components involved

The concepts and components architected in CloNe work together to implement the distributed
virtual infrastructure across different providers. Once the request from the tenant is received, the
following steps are taken:

• The VXDL request is parsed and the Decomposer is the entity in the architecture that is
responsible for determining where the infrastructure is to be deployed as the placement logic
resides in this component. Most of the envisioned virtual infrastructures will involve more
than one provider and thus it is the Decomposer’s responsibility to break down the request
onto smaller pieces of infrastructure that will be deployed by different Infrastructure Service
Providers. All of the tenant’s requirements must be met or the request has to be denied.

• Delegation: the process of passing on requests to other providers for deployment. This is done
by calling the Infrastructure Service Interface of the respective providers. These are interfaces
that allow for the creation of virtual resources (e.g., RESTful interfaces such as OCCI/OCNI).
An Virtual Infrastructure Identifier that represents the infrastructure is generated and passed
along with the requests.

• In case one of the providers is not able to fulfil the request, a new provider needs to be found
that meets the tenants requirements. If none is found, the request is denied.

• Each one of the providers may decide to break down the request into smaller pieces of in-
frastructure and use Delegation again. When the provider decides to deploy the virtual in-
frastructure locally, it will use the Resource Allocation function to allocate virtual machines,
storage and network. All of the tenants requirements must be fulfilled. The provider imple-
menting the infrastructure signals to the requesting provider the fact that the infrastructure
is ready to be used.

• Once all of the pieces of infrastructure are deployed it is time to connect them together.
In order for that to happen, a provider needs to know whom it shall connect its piece of
infrastructure to. Through the Infrastructure Service Interface, using the pre-defined Virtual
Infrastructure ID, the peer providers are made aware of each other. The process is of course
recursively applied if further Delegation has been used.

• The involved providers use the Distributed Control Plane to connect their pieces of infras-
tructure. DCP is used for link negotiation between the two involved providers. For example,
the characteristics of the link are agreed (hose model), encapsulation schemes (e.g., VLAN,
GRE), routes that should be announced (OSPF routes), amongst others.

• Once DCP has finished agreeing upon connections, the full Virtual Infrastructure is ready to
be used. The Virtual Infrastructure ID is returned to the tenant.

6.2 Elastic Video Distribution

The Elastic Video Distribution scenario is not different from any other distributed application.
Therefore, this use case focuses on the deployment of distributed application at the edge of the
network, leveraging on distributed computational resources made available by a network operator.
Computing resources are geographically distributed in the operator network in a more fine-grained
fashion than today’s data centre cloud deployments. The motivation for doing so is to leverage
on the closeness to end-user offering enhanced QoE. Moreover, such distributed deployment will

SAIL Public 77

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

reduce the stress on networks, since content can be pushed to the edge servers when the core
network is less congested (so called pre-caching).

This scenario is made more complex since CloNe aims at automatic scalability of the application
based on end-users demand. The CloNe solution is able to start new instances of Content Servers
in an automated fashion once demand increases.

6.2.1 Tenant interaction

Differently from the scenario described in Section 6.1 where the application is unaware of the
infrastructure, in this case the application needs to interact with the infrastructure much more
closely. This is because the automated deployment of servers needs to be notified to the application
that needs to take action to include new servers in the pool of resources. For example, in the case
of video delivery, if the CloNe platform creates a new Video Streamer, the application should add
that server to its DNS so clients can start using it.

Besides the IaaS offering seen in the previous scenario (Section 6.1) providing a framework for
managing and interconnecting virtual resources spanning multiple providers; CloNe also allows
end-users to send richer requests specifying how the to-be-deployed application will react upon
load variations at any of its encompassing components.

The steps through which the tenant should go through to successfully deploy an application
capable of scaling up or down automatically on the CloNe infrastructure are:

• Identification of the elastic application to be deployed on CloNe (e.g. video distribution)

• Identification of the elastic components encompassing (components that will be scaled up or
down based on end-users demand) the application.

• Specification of a virtual infrastructure including: 1. the virtual images to be used; 2. the
resource requirements; and 3. the policies on how to react on changes on the to be monitored
KPIs (load data).

• Sending request for virtual infrastructure to Infrastructure Service Provider

• Receiving response to request, acknowledging infrastructure deployed

6.2.2 Components involved

A CloNe provider offers a single point of access (Figure 6.1) to deploy elastic applications. As it is
seen in this schematic picture, the monitoring and topology information are received from different
network and data centre providers from one side and the application request is received via VXDL
file from other side. This CloNe provider can divide service deployment requests into small chunks
and delegate these to other more appropriate CloNe providers. Before any request from the tenant is
received, this management component discovers and knows the topology of all CloNe infrastructure
providers. Once the request from the tenant is received, the same steps described in Section 6.1
are taken in order to perform the initial placement of the elastic application.

Once the application has been initially deployed, and upon regularly collected and received
KPIs coming from both the infrastructure and the application layers, a placement logic decides
automatically to deploy new or shut down old VMs (e.g. intermediate or caching nodes in a video
distribution overlay). This decision is made based on the policies on how to react on changes on
the monitored KPIs specified in the initial VXDL request.

The process of deploying new or shutting down old VMs is done by calling the Infrastructure
Service Interface of the target infrastructure providers. These are interfaces that allow for the
creation of virtual resources (e.g., RESTful interfaces such as OCCI/OCNI).

SAIL Public 78

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

Figure 6.1: Elastic Application Deployment

The components involved in the use cases described above are the orchestration and distributed
control components that are required to realize these two use cases. However, as it was noticed in
previous chapters, there are several optimization, management, security and enhancement compo-
nents such as optimized resource management or network resource control that are not mentioned
here. These components are invoked by infrastructure service providers or data centre and network
management specifically when applicable.

SAIL Public 79

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

7 Conclusions

The architecture presented in this document is the result of an iterative design and prototyping
approach. The CloNe work package of the SAIL project developed the initial Cloud Networking
Architecture during its first year and used it as the basis of multiple prototyping and simulation
efforts. Some of these prototypes implemented specific management and security functions and some
developed complete systems involving multiple data centres and networks spread across Europe.
These prototypes are described in deliverable D-5.2 Description of Final Prototype [3] and the
various published literature referenced throughout this document.

Experience gained through prototyping lead to refinements in the concepts, more detail in the
interactions, and a better understanding of the layering of the architecture itself. The Flash Network
Slice (FNS) concept has been expanded to include more detail in how constraints and network
functions can be included in its definition. This also provided a better understanding of the division
between technology independent and implementation specific aspects. The building blocks and
mappings described in Chapter 3 are the result of practical implementation using multiple network
technologies.

The functions and interactions of the infrastructure service provider have been clearly separated
out into the service, inter-provider, and intra-provider layers described in Chapter 2. The separation
of concerns between the infrastructure service itself and the interactions of the Distributed Control
Plane (DCP) has been properly established with the division between the service layer and the inter-
provider layer. In this division the service layer is dealing with abstract infrastructure definitions
and delegation between providers based on service level objectives, and the cross provider layer
is dealing with negotiation of configuration details, discovery of capabilities, and implementation
of security controls. This distinction became clear during the implementation of the complete
prototype described in [3].

The functions that comprise the management aspect of the architecture were re-factored to
identify resource and performance monitoring and resource control as independent functions. These
two were previously considered integral to fault management and resource management, but are now
viewed as independent functions that support not only resource management and fault management
but also other functions. Additionally the Distributed Knowledge Plane (DKP) has been removed
as a concept. The DKP provided distributed information access. This is now viewed as an artefact
of a distributed implementation design choice and not an architectural concept.

The security aspect has been expanded to accommodate the service layer delegation concept. In
particular it is recognised that the authorisation function will need to operate in the presence of
delegation chains due to user access right delegation and provider implementation delegation.

7.1 Contributions

The main focus of the CloNe work package has been to gain an understanding of cloud networking:
the combined provision of network, compute, and storage resources across diverse infrastructure
service providers. The basis of this understanding is the concept of the FNS network resource and
how it relates to the cloud computing Infrastructure as a Service (IaaS) paradigm.

Additionally we have explored delegation as a means to organise management of virtual infras-
tructure in multiple administrative domains. This approach is suitable for use within a single

SAIL Public 80

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

organisation, such as a network operator or a data centre operator, as a means to organise internal
management systems, or across organisational boundaries as a means to support virtual infrastruc-
ture management across providers. Delegation will allow for an ecosystem of cloud providers to
utilize each other’s resources while satisfying the requirements of the cloud customer.

The CloNe architecture proposed in this document goes beyond the state of the art in the area of
IaaS. The FNS provides an abstraction of a network service that fits the model of cloud computing
and that addresses one of the missing parts of existing cloud services: ”the ability to define and
manage a network service that spans providers”. The FNS provides dynamic connectivity services
with a defined level of performance and reliability expected by enterprise applications to be deployed
in the cloud. The architecture allows users to specify measurable performance goals associated to
resources allocated in the infrastructure.

Yet another new concept is the deployment of computing and storage resources within the net-
work. These resources allow a finer level of distribution of service than the one provided by existing
data centres. Decisions to place and scale compute and storage resources can be combined by the
providers, with their understanding of network performance and capacity, to provide better service
to their users and better optimisation of their infrastructure.

The concepts developed for the CloNe architecture have contributed to the development of open
source with libNetVirt [81] and pyOCNI [13], and to standardisation with the VXDL [82] and OCNI
[13] infrastructure description languages and interfaces.

7.2 Closing Remarks

The CloNe architecture has been used to build a successful prototype of a cloud system inter-
connecting services running across data centres and operator networks and therefore can be the
base for materializing such service by actual data center and network providers today. Businesses
small and large are using cloud infrastructure to host their IT services and to consume externally
provided IT services. They need to integrate these with their own infrastructure to create secure,
managed environments. At present this integration activity is manual and providers understand
that it is not sufficient. Experience has shown that the FNS and DCP developed by CloNe plays
an important role in enabling these integrated infrastructures.

Additionally, the ability to deploy services across and within networks, as a way to take advantage
of network proximity to customers and their (potentially mobile) end users, is developing as a means
to support on-demand services from bulk-data transfer, to streaming media and on-line gaming.

It is clear that the concepts and mechanism developed in the CloNe architecture enable real
business needs of cloud computing to be met in the on-going evolution of the Internet.

SAIL Public 81

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

List of Figures

2.1 Architecture overview . 6
2.2 Management and security aspects occur in each layer of the architecture 7
2.3 The IaaS service model . 8
2.4 Delegation in the CloNe IaaS service model . 9
2.5 Coordination in the CloNe IaaS service model . 10
2.6 Virtual infrastructure spanning two administrative domains 11
2.7 User view of virtual infrastructure . 12
2.8 The Resource Layer . 14
2.9 The Intra-Provider Layer . 16
2.10 The Inter-Provider Layer . 17
2.11 The Service Layer . 18
2.12 Management Concepts . 20

3.1 Separation of technology-independent and technology-dependent functions 28
3.2 Network model building blocks . 29
3.3 The DC/WAN interface for tenant isolation. 30
3.4 Layer 3 VPN . 33
3.5 Virtual Leased Line . 33
3.6 VPLS (E-LAN) . 34
3.7 A complex virtual infrastructure for one tenant with multiple FNSs 36

4.1 Conceptual Architecture of HyFS Manager . 52
4.2 Interaction between Security Functions . 53
4.3 Identity provisioning using a central Identity provider 57
4.4 Domain-wise Identity provisioning . 58

5.1 Concretisation of the high level declarative model specification into procedural do-
main and technology specifications . 62

5.2 Bird’s eye view of the system employed for inter-provider coordination. 63
5.3 Inter-provider infrastructure provisioning . 68
5.4 Example of a scaled geographical distributed three tier application. 70
5.5 Architecture extensions and essential components. 71
5.6 Scenario C: Load-adaptive NetInf deployment . 73

6.1 Elastic Application Deployment . 79

SAIL Public 82

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

List of Tables

3.1 Mapping CloNe concepts to VXDL and OCNI . 31
3.2 Link Negotiation Protocol: technology dependent information 32
3.3 Components, relation to CloNe architecture and mapping to standard network services 35

4.1 Elastic API possible actions . 42
4.2 Comparison between different identity management mechanisms 59

SAIL Public 83

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

List of Acronyms

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

CDN Content Distribution Network

CDMI Cloud Data Management Interface

CloNe Cloud Networking

CMBS Cloud Message Brokering Service

CPU Central Processing Unit

DCP Distributed Control Plane

DKP Distributed Knowledge Plane

EDA Event Driven Architecture

GRE Generic Routing Encapsulation

FNS Flash Network Slice

IaaS Infrastructure as a Service

IDS Intrusion Detection System

IPsec Internet Protocol Security

JMS Java Message Service

KDD Knowledge Discovery and Data Mining

LNP Link Negotiation Protocol

MPLS Multiprotocol Label Switching

NetInf Network of Information

NNRP NEC NetInf Router Platform

NIC Network Interface Card

OCCI Open Cloud Computing Interface

OCNI Open Cloud Networking Interface

QoE Quality of Experience

QoS Quality of Service

SAIL Public 84

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

S3 Simple Storage Service

SaaS Software as a Service

SAIL Scalable Adaptive Internet Solutions

SAML Security Assertion Markup Language

SIEM Security Information and Event Management

SLA Service Level Agreement

SPML Service Provisioning Markup Language

SSL Secure Socket Layer

SVM Support Vector Machine

TPM Trusted Platform Module

UMA User Managed Access

URI Universal Resource Identifier

VI Virtual Infrastructure

VLAN Virtual Local Area Network

VM Virtual Machine

VN Virtual Network

VPLS Virtual Private LAN Service

VPN Virtual Private Network

VXDL Virtual private eXecution infrastructure Description Language

WAN Wide Area Network

WPD Work Package D

XML Extensible Markup Language

SAIL Public 85

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

References

[1] The SAIL project web site. http://www.sail-project.eu/.

[2] SAIL Consortium. D-5.2 (d-d.1) cloud network architecture description. Technical report,
ICT-SAIL project 257448, July 2011.

[3] The SAIL Consortium. D-D.2: Description of the implemented prototype. Technical report,
FP7-ICT-2009-5-257448-SAIL, 2012.

[4] Edwall, Thomas. D-2.1 (D-A.1) Description of project wide scenarios and use cases. Technical
report, FP7-ICT-2009-5-257448-SAIL, 2011.

[5] ACM SIGCOMM 2012 Conference, SIGCOMM ’12, Helsinki, Finland, August 2012.

[6] GEYSERS: Generalised Architecture for Dynamic Infrastructure Services.
http://www.geysers.eu/.

[7] Future Network Mobile Summit 2012, Berlin, Germany. http://www.futurenetworksummit.
eu/2012/.

[8] Moritz Steiner, Bob Gaglianello Gaglianello, Vijay K. Gurbani, Volker Hilt, William D. Roome,
Michael Scharf, and Thomas Voith. Network-aware service placement in a distributed cloud
environment. In Proceedings of the ACM SIGCOMM 2012 Conference, pages 73–74, 2012.

[9] Peter Xiang Gao, Andrew R. Curtis, Bernard Wong, and Srinivasan Keshav. Its not easy
being green. In Proceedings of the ACM SIGCOMM 2012 Conference, SIGCOMM 12, page
211222, New York, NY, USA, 2012. ACM.

[10] Hans Lindgren, Fetahi Wuhib, and Rolf Stadler. Dynamic resource allocation with manage-
ment objectives : Implementation for an openstack cloud. In Proceedings of 8th International
Conference on Network and Service Management (CNSM 2012), 2012.

[11] Quantum L3 Abstractions and API Framework , December 2011.
https://blueprints.launchpad.net/quantum/+spec/quantum-l3-api.

[12] Guilherme Koslovski, Pascale Vicat-Blanc Primet, and Andrea Schwertner Charão. VXDL:
Virtual Resources and Interconnection Networks Description Language. In The Second In-
ternational Conference on Networks for Grid Applications (GridNets 2008), Lecture Notes of
the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.
Springer Berlin Heidelberg, Oct. 2008.

[13] pyOCNI - a Python implementation of an extended OCCI with a JSON serialization and a
cloud networking extension. Online URL: http://occi-wg.org/2012/02/20/occi-pyocni/.

[14] Ralf Nyrén, Andy Edmonds, Alexander Papaspyrou, and Thijs Metsch. Open Cloud Comput-
ing Interface – Core. GFD-P-R.183, April 2011.

[15] Thijs Metsch and Andy Edmonds. Open Cloud Computing Interface – Infrastructure. GFD-
P-R.184, April 2011.

SAIL Public 86

http://www.sail-project.eu/
http://www.futurenetworksummit.eu/2012/
http://www.futurenetworksummit.eu/2012/

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

[16] OpenNebula. The open source solution for data center virtualization.
http://www.opennebula.org/.

[17] Rackspace Cloud Computing. Openstack cloud software. http://www.openstack.org/.

[18] SAIL Consortium. D-3.1 (d-b.1) the network of information: Architecture and applications.
Technical report, ICT-SAIL project 257448, July 2011.

[19] Libvirt. http://libvirt.org/.

[20] A.G. Prieto, D. Gillblad, R. Steinert, and A. Miron. Toward decentralized probabilistic man-
agement. Communications Magazine, IEEE, 49(7):80 –86, July 2011.

[21] Schoo, Peter and Fusenig, Volker and Souza, Victor and Melo, Márcio and Murray, Paul and
Debar, Herve and Medhioub,Houssem and Zeghlache,Djamal. Challenges for Cloud Networking
Security. In Kostas Pentikousis, Ramón Agüero Calvo, Marta Garćıa-Arranz, and Symeon
Papavassiliou, editors, MONAMI, volume 68 of Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering, pages 298–313. Springer,
2010.

[22] Eileen Forrester. Aligning Security Management Processes with CMMI. Defense, pages 1–9,
2005.

[23] Giles Hogben. ENISA Cloud Computing Security Strategy. Terena, 2011.

[24] Clinch, Jim. ITIL V3 and Information Security by Jim Clinch. Information Security, pages
1–40, 2009.

[25] Volker Fusenig and Ayush Sharma. Security architecture for cloud networking. In Computing,
Networking and Communications (ICNC), 2012 International Conference on, pages 45–49, 30
2012-feb. 2 2012.

[26] Horecker, B L and Stadtman, E REditors, editor. OASIS Service Provisioning Markup Lan-
guage (SPML) Version 2. Academic Press, 2006.

[27] Eric Dubuis. SAML Assertions. Security, 2011.

[28] Dan Wang and Dengguo Feng. A Hypervisor-Based Secure Storage Scheme. In Networks
Security Wireless Communications and Trusted Computing (NSWCTC), 2010 Second Inter-
national Conference on, volume 1, pages 81 –86, april 2010.

[29] CloudAudit, June 2012. http://cloudaudit.org/.

[30] E. Rosen and Y. Rekhter. BGP/MPLS IP Virtual Private Networks (VPNs), RFC 4364.

[31] W. Augustyn and Y. Serbest. Framework for Layer 2 Virtual Private Networks (L2VPNs),
RFC 4664.

[32] W. Augustyn and Y. Serbest. Service Requirements for Layer 2 Provider-Provisioned Virtual
Private Networks, RFC 4665.

[33] R. Santitoro. Metro Ethernet Services - A Technical Overview.

[34] K. Kompella and Y. Rekhter. Virtual Private LAN Service (VPLS) Using BGP for Auto-
Discovery and Signaling, RFC 4761.

SAIL Public 87

http://libvirt.org/

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

[35] M. Lasserre and V. Kompella. Virtual Private LAN Service (VPLS) Using Label Distribution
Protocol (LDP) Signaling, RFC 4762.

[36] Guilherme Koslovski, Pascale Vicat-Blanc Primet, and Andrea Schwertner Charão. VXDL:
Virtual Resources and Interconnection Networks Description Language. In The Second In-
ternational Conference on Networks for Grid Applications (GridNets 2008), Lecture Notes of
the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering,
Beijing, China, Oct. 2008. Springer Berlin Heidelberg.

[37] Right Scale: Set up Autoscaling using Voting Tags. Available: http://support.rightscale.
com/.

[38] Daniel Morn, Luis M. Vaquero, and Fermin Galn. Elastically ruling the cloud: Specifying
application’s behavior in federated clouds. Cloud Computing, IEEE International Conference
on, 0:89–96, 2011.

[39] Luis Rodero-Merino, Luis M. Vaquero, Victor Gil, Fermı́n Galán, Javier Fontán, Rubén S.
Montero, and Ignacio M. Llorente. From infrastructure delivery to service management in
clouds. Future Gener. Comput. Syst., 26:1226–1240, October 2010.

[40] Luis M. Vaquero, Daniel Moran, Fermin Galan, and Jose M. Alcaraz-Calero. Towards Runtime
Reconfiguration of Application Control Policies in the Cloud. Journal of Network and Systems
Management, 1(1), 2011.

[41] Amazon Auto Scaling, June 2012. Available: http://aws.amazon.com/autoscaling/.

[42] Scalr. Available: http://www.scalr.net/.

[43] B. Bjurling and R. Steinert and D. Gillblad. Translation of Probabilistic QoS in Hierarchic
and Decentralized Settings. In The 13th Asia-Pacific Network Operations and Management
Symposium, Taipei, Taiwan, 2011.

[44] R. Steinert, S. Gestrelius, and D. Gillblad. A distributed spatio-temporal event correlation
protocol for multi-layer virtual networks. In Global Telecommunications Conference (GLOBE-
COM 2011), 2011 IEEE, pages 1–5. IEEE, 2011.

[45] R. Steinert and D. Gillblad. Link delay modeling and direct localization of performance
degradations in transport networks. In Submitted to INFOCOM 2013. IEEE, 2012.

[46] Y. Zhu and M. Ammar. Algorithms for assigning substrate network resources to virtual
network components. In INFOCOM 2006. 25th IEEE International Conference on Computer
Communications. Proceedings, pages 1–12, 2006.

[47] M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking virtual network embedding: Substrate
support for path splitting and migration. ACM SIGCOMM Computer Communication Review,
38(2):17–29, 2008.

[48] N.M.M.K. Chowdhury, M.R. Rahman, and R. Boutaba. Virtual network embedding with
coordinated node and link mapping. In INFOCOM 2009, IEEE, pages 783–791, 2009.

[49] J. Nogueira, M. Melo, J. Carapinha, and S. Sargento. Virtual network mapping into heteroge-
neous substrate networks. In IEEE Symposium on Computers and Communications (ISCC)
2011, June 2011.

SAIL Public 88

http://support.rightscale.com/
http://support.rightscale.com/
http://aws.amazon.com/autoscaling/
http://www.scalr.net/

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

[50] Michael Isard. Autopilot: automatic data center management. SIGOPS Oper. Syst. Rev.,
41(2):60–67, April 2007.

[51] Márcio Melo, Jorge Carapinha, Susana Sargento, Luis Torres, Phuong Nga Tran, Ulrich Kil-
lat, and Andreas Timm-Giel. Virtual network mapping - an optimization problem. In Kostas
Pentikousis, Rui Aguiar, Susana Sargento, Ramón Agüero, Ozgur Akan, Paolo Bellavista, Jian-
nong Cao, Falko Dressler, Domenico Ferrari, Mario Gerla, Hisashi Kobayashi, Sergio Palazzo,
Sartaj Sahni, Xuemin (Sherman) Shen, Mircea Stan, Jia Xiaohua, Albert Zomaya, and Ge-
offrey Coulson, editors, Mobile Networks and Management, volume 97 of Lecture Notes of
the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering,
pages 187–200. Springer Berlin Heidelberg, 2012.

[52] L.A. Wolsey. Integer programming. IIE Transactions, 32:273–285, 2000.

[53] S. Even, A. Itai, and A. Shamir. On the complexity of time table and multi-commodity flow
problems. In 16th Annual Symposium on Foundations of Computer Science, page 184–193,
1975.

[54] M. Pióro and D. Medhi. Routing, Flow, and Capacity Design in Communication and Computer
Networks. Elsevier/Morgan Kaufmann, 2004.

[55] Fetahi Wuhib, Rolf Stadler, and Mike Spreitzer. Gossip-based resource management for cloud
environments. In International Conference on Network and Service Management, October
2010.

[56] Rerngvit Yanggratoke, Fetahi Wuhib, and Rolf Stadler. Gossip-based resource allocation for
green computing in large clouds. In International Conference on Network and Service Man-
agement, October 2011.

[57] F. Wuhib, R. Stadler, and M. Spreitzer. A gossip protocol for dynamic resource management in
large cloud environments. Network and Service Management, IEEE Transactions on, 9(2):213
–225, june 2012.

[58] J. Soares, R. Monteiro, M. Carapinha, J. Melo, and S. Sargento. Resource allocation in the
network operator’s cloud: A virtualization approach. In Computers and Communications
(ISCC), 2012 IEEE Symposium on, pages 000800 –000805, july 2012.

[59] Amir Nahir, Ariel Orda, and Danny Raz. Distributed oblivious load balancing using prioritized
job replication. Technical report, Technion, Israel Institute of Technology, April 2011.

[60] Paulo Gonçalves, Shubabrata Roy, Thomas Begin, and Patrick Loiseau. Dynamic resource
management in clouds: A probabilistic approach. IEICE Transactions on Communications,
special session on Networking Technologies for Cloud Services, 2012.

[61] Eucalyptus. The open source cloud platform. http://open.eucalyptus.com/.

[62] The SAIL Consortium. D-2.9: (D.A.9) Description of the Overall Prototyping Use cases,
Scenarios and Integration Points. Technical report, FP7-ICT-2009-5-257448-SAIL, 2012.

[63] Juliano Araujo Wickboldt, Lisandro Zambenedetti Granville, Dominique Dudkowski, and Mar-
cus Brunner. Hyfs manager: A hybrid flash slice manager. In Presented in Student Demo Con-
test of the 13th IEEE/IFIP Network Operations and Management Symposium (NOMS 2012),
April 2012.

SAIL Public 89

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

[64] Juliano Araujo Wickboldt, Lisandro Zambenedetti Granville, Fabian Schneider, Dominique
Dudkowski, and Marcus Brunner. Network-centric design of customizable resource alloca-
tion for distributed cloud infrastructures. In Accepted as short paper at the 8th International
Conference on Network and Service Management (CNSM 2012), October 2012.

[65] A. Kannan, A. Sharma, Jr. G.Q. Maguire, and P. Schoo. Genetic Algoritm based Feature
Selection Algorithm for Effective Intrusion Detection in Cloud Networks. In Submitted for
ICDM 2012 (IEEE internation conference on Data Mining), 2012.

[66] I. Aguirre and S. Alonso. Improving the automation of security information management: A
collaborative approach. Security Privacy, IEEE, 10(1):55 –59, jan.-feb. 2012.

[67] Yuteng Guo, Beizhan Wang, Xinxing Zhao, Xiaobiao Xie, Lida Lin, and Qingda Zhou. Fea-
ture selection based on Rough set and modified genetic algorithm for intrusion detection. In
Computer Science and Education (ICCSE), 2010 5th International Conference on, pages 1441
–1446, aug. 2010.

[68] Gary Stein, Bing Chen, Annie S. Wu, and Kien A. Hua. Decision tree classifier for network
intrusion detection with GA-based feature selection. In Proceedings of the 43rd annual South-
east regional conference - Volume 2, ACM-SE 43, pages 136–141, New York, NY, USA, 2005.
ACM.

[69] Cao Li-ying, Zhang Xiao-xian, Liu He, and Chen Gui-fen. A network intrusion detection
method based on combined model. In Mechatronic Science, Electric Engineering and Computer
(MEC), 2011 International Conference on, pages 254 –257, aug. 2011.

[70] M. Tavallaee, E. Bagheri, Wei Lu, and A.A. Ghorbani. A detailed analysis of the KDD CUP 99
data set. In Computational Intelligence for Security and Defense Applications, 2009. CISDA
2009. IEEE Symposium on, pages 1 –6, july 2009.

[71] I.A. Tndel, J. Jensen, and L. Rstad. Combining Misuse Cases with Attack Trees and Security
Activity Models. In Availability, Reliability, and Security, 2010. ARES ’10 International
Conference on, pages 438 –445, feb. 2010.

[72] J.A. Ingalsbe, L. Kunimatsu, T. Baeten, and N.R. Mead. Threat Modeling: Diving into the
Deep End. Software, IEEE, 25(1):28 –34, jan.-feb. 2008.

[73] R. Ahmad and L. Janczewski. Governance life cycle framework for managing security in
public cloud: From user perspective. In Cloud Computing (CLOUD), 2011 IEEE International
Conference on, pages 372 –379, july 2011.

[74] M. Nottingham and R. Sayre. The Atom Syndication Format, RFC 4287.

[75] Maciej P. Machulak, Lukasz Moreń, and Aad van Moorsel. Design and implementation of user-
managed access framework for web 2.0 applications. In Proceedings of the 5th International
Workshop on Middleware for Service Oriented Computing, MW4SOC ’10, pages 1–6, New
York, NY, USA, 2010. ACM.

[76] Suhas Pai, Yash Sharma, Sunil Kumar, Radhika M. Pai, and Sanjay Singh. Formal Verification
of OAuth 2.0 Using Alloy Framework. In Proceedings of the 2011 International Conference on
Communication Systems and Network Technologies, CSNT ’11, pages 655–659, Washington,
DC, USA, 2011. IEEE Computer Society.

SAIL Public 90

Document: FP7-ICT-2009-5-257448-SAIL/D-5.4
Date: October 31, 2012 Security: Public

Status: Final Version: 1.0

[77] Jose M. Alcaraz Calero, Nigel Edwards, Johannes Kirschnick, Lawrence Wilcock, and Mike
Wray. Toward a Multi-Tenancy Authorization System for Cloud Services. IEEE Security and
Privacy, 8(6):48–55, November 2010.

[78] Rodrigo N. Calheiros, Christian Vecchiola, Dileban Karunamoorthy, and Rajkumar Buyya.
The aneka platform and qos-driven resource provisioning for elastic applications on hybrid
clouds. Future Gener. Comput. Syst., 28(6):861–870, June 2012.

[79] Amazon CloudWatch, June 2012. Available: http://aws.amazon.com/cloudwatch/.

[80] Amazon Route 53. Available: http://aws.amazon.com/route53/.

[81] Daniel Turull, Markus Hidell, and Peter Sjödin. libNetVirt: the network virtualization library.
In Workshop on Clouds, Networks and Data Centers (ICC’12 WS - CloudNetsDataCenters),
Ottawa, Canada, June 2012.

[82] Vxdl forum. http://www.vxdlforum.org.

SAIL Public 91

http://aws.amazon.com/cloudwatch/
http://aws.amazon.com/route53/
http://www.vxdlforum.org

	Introduction
	Scenarios and use-cases
	Requirements
	Scope and Focus
	Recent related work
	Document Outline

	The CloNe Architecture
	Overview
	Service Model
	Infrastructure Description
	Flash Network Slice
	Information Model
	Data Description and Interchange

	Architecture Layers
	Resource Layer
	Intra-Provider Layer
	Inter-Provider Layer
	Service Layer

	Management Aspects
	Management Architecture
	Management Functions in the Intra-Provider Layer
	Management Functions in the Inter-Provider and Service Layers

	Security Aspects
	Security Architecture
	Security Functions in the Intra-Provider Layer
	Security Functions in the Inter-Provider Layer

	Elaboration of the Flash Network Slice Concept
	Architectural Constraints
	Basic Components of the FNS
	Mapping FNS components to CloNe protocols
	VXDL and OCNI
	Inter-Provider Coordination in CloNe: DCP

	Materializing FNS in the WAN
	Virtual Infrastructure Example

	Elaboration of the Intra-Provider Layer
	Management Functions—Operations and Interactions
	Implemented Approaches to Goal Translation
	VXDL as a Language for High-level Goals
	Goal Translation Algorithm

	Implemented Approaches to Fault Management
	Implemented Approaches to Resource Management
	Network Optimization
	Scalable Compute Resource Optimization
	Joint Resource Allocation
	Oblivious Load Balancing
	Probabilistic Demand Prediction
	Customizable Cloud Resource Management

	Implemented Approaches to Security Management
	SIEM based Intrusion Detection System
	Security Goal Translation function
	Auditing and Assurance function
	Identity Management
	Access Control

	Elaboration of the Inter-Provider and Service Layers
	Main Concepts
	Declarative vs Procedural Knowledge
	Distributed Computing Model in CloNe
	The Distributed Control Plane
	Goal Translation

	Implemented Approaches to Inter-Provider Management and Security
	Object Location
	Link Negotiation Protocol
	Access Control

	Implemented Approaches to Service Layer Management and Security
	Goal Translator

	Load-Adaptive Deployment
	Need for Dynamic allocation and Load Balancing
	A Possible Implementation Approach for Dynamic Adaptation

	Application use-cases played out
	Dynamic enterprise
	Tenant interaction
	Components involved

	Elastic Video Distribution
	Tenant interaction
	Components involved

	Conclusions
	Contributions
	Closing Remarks

	List of Figures
	List of Tables
	List of Acronyms
	References

