SEVENTH FRAMEWORK
\ PROGRAMME

S AIl L

Objective FP7-ICT-2009-5-257448/D-4.3
Future Networks
Project 257448

“SAIL — Scalable and Adaptable Internet Solutions™

D-4.3
(D.C.3) Demonstrator Specification and
Integration Plan

Date of preparation: 2012-08-15 Revision: 1.1
Start date of Project: 2010-08-01 Duration: 2013-01-31
Project Coordinator: Thomas Edwall

Ericsson AB

[\ N

SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
Date: August 15, 2012 Security: Public
Status: Final Version: 1.1

Document Properties

Document Number:

D-4.3

Document Title:

(D.C.3) Demonstrator Specification and Integration Plan

Document Responsible:

Michael Soellner

ALUD)

Document Editor:

(
Michael Soellner (ALUD)

Authors:

Ramoén Agiiero (UC),

Pedro A. Aranda Gutiérrez (Telefénica I+D),
Luis Fco. Diez (UC)

Marta Garcia (UC),

Olivier Mehani (NICTA),

Susana Perez (Tecnalia),

Peter Schefczik (ALUD),

Michael Soellner (ALUD),

Lucian Suciu (FT-Orange),

Asanga Udugama (UHB)

Target Dissemination Level: PU
Status of the Document: Final
Version: 1.1

Production Properties:

Reviewers:

Marcus Brunner (NEC) Luis M. Correia (IST)
Stephen Farrell (TCD) Benoit Tremblay (EAB)

Document History:

Revision | Date Issued by Description
1.0 2012-05-23 | Michael Soellner | Final Version
1.1 2012-08-15 | Michael Soellner | Change confidentiality status, fixed a few typos

Disclaimer:

This document has been produced in the context of the SAIL Project. The research leading to these results has
received funding from the European Community’s Seventh Framework Programme (FP7/2010-2018) under grant
agreement n° 257448.
All information in this document is provided “as is” and no guarantee or warranty is given that the information
is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.

For the avoidance of all doubts, the Furopean Commission has mo liability in respect of this document, which is
merely representing the authors view.

SAIL

Public

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3

Date: August 15, 2012 Security: Public l\\\
Status: Final Version: 1.1 SAIlL
Abstract:

This document is a public deliverable of the EU-FP7 project SAIL (Scalable Adaptive Internet
Solutions, [1]) and describes the demonstrator activities and prototype integration plan for the
SAIL workpackage 'Open Connectivity Service (OConS)’ with the target of final realization at
project end. Moreover, details of cross-WP cooperation are given from an OConS perspective
in addition to the project-wide description in the forthcoming deliverable D.A.9 ”Description of
overall prototyping use cases, scenarios and integration points”.

Keywords:

open connectivity services, prototyping, demonstration, cloud networking, network of information, open-
flow, dtn, icn, multi-path, distributed connectivity control, distributed mobility management

ii Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
l\\\ Date: August 15, 2012 Security: Public
SA I L Status: Final Version: 1.1

Executive Summary

This document is a public deliverable of the EU-FP7 project SAIL (Scalable Adaptive Internet
Solutions, cf. [1]) and describes the demonstrator activities and prototype integration plan for
the SAIL workpackage *Open Connectivity Service (OConS) with the target of final realization at
project end. Moreover, details of cross-WP cooperation (with workpackage (WP) ’Cloud Network-
ing (CloNe) and with WP ’Network of Information (NetInf)) are given from a OConS perspective
in addition to the project-wide description in the forthcoming deliverable D.A.9 ”Description of
overall prototyping use cases, scenarios and integration points”.

The practical evaluation work in WP OConS started with the design and realization of a first
experimental project phase (Phasel) which resulted in intermediate demonstration show cases.
These results were presented and discussed at a project-internal workshop in January 2012.

Based on these components and the gained experience, this document now defines the further
step of OConS prototype and demonstration activities which focuses in a Phase2 on the updated
use case scenarios (from D.C.1-Addendum [2]), the workpackage internal cooperation based on the
progress of the OConS architectural framework, and the cross-WP cooperation with CloNe and
NetlInf.

For the final OConS-CloNe interaction, we focus on developing an ”elastic video networking” use
case scenario, whereas the OConS-NetInf interaction deals with multi-path connectivity services
for Information-Centric Networks (ICN)-like content delivery, as well as improving Delay Tolerant
Network (DTN) connectivity and routing.

The plans given here are aiming at the final realizations at the project end.

SAIL Public iii

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3

Date: August 15, 2012 Security: Public l\\\
Status: Final Version: 1.1 SAIlL
Contents
1 Introduction 1
1.1 Phase 1: OConS Initial Prototyping and Demonstration Activities until Lisbon
Workshop o o 2
1.2 Phase 2: Towards the Project-wide Flash Crowd Scenario 3
1.3 OConS for CloNe: Mobile Access and Datacentre Interconnection Use Case 4
1.4 OConS for NetInf: Mobile and Multi-P for Information Centric Networks Use Case . 5
2 Description of Prototype Building Blocks 8
2.1 Building Block: OConS Flow-Based Domain Connectivity Control 8
2.2 Building Block: Interconnecting Datacentres using OpenFlow 13
2.3 Building Block: Multi-path Content Delivery for Information Centric Networks with
OConS e e e 16
2.4 Building Block: DTN routing based on adaptive learning from historical encounters
with OConS e e e 18
2.5 Building Block: Distributed Access Selection and Mobility Decision with OConS 23
2.6 Building Block: Dynamic Distributed Mobility Execution with OConS 25
3 Analysis of OConS Scenarios 27
3.1 OConS for CloNe: Mobile Access and Datacentre Interconnection Use Case 27
3.2 OConS for NetInf: Multi-P and DTN for Information Centric Networks Use-Case . . 31
3.3 Common OConS support for CloNe and NetInf 32
4 Final Demonstrator Design and Realization Aspects (Phase 2) 35
4.1 OConS support for CloNe 35
4.2 OConS support for NetInf 37
4.3 OConS Framework Reusable Components 38
5 Integration and Cooperation Plan 45
5.1 OConS and CloNe: Elastic Video Networking 45
5.2 OConS and Netlnf: Multi-path Content Delivery for ICNs with OConS 46
5.3 OConS and NetInf: OConS routing for DTVideo, 47
6 Conclusion 50
List of Acronyms 51
List of Figures 52
Bibliography 54

Public

SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
l\\\ Date: August 15, 2012 Security: Public
SA I L Status: Final Version: 1.1

1 Introduction

This document is a public deliverable of the EU-FP7 project SAIL (Scalable Adaptive Internet
Solutions, cf. [1]) and describes the demonstrator activities and prototype integration plan for
the SAIL workpackage *Open Connectivity Service (OConS)’ with the target of final realization at
project end. Moreover, details of cross-WP cooperation (with workpackage (WP) ’Cloud Network-
ing (CloNe) and with WP ’Network of Information (NetInf)’) are given from a OConS perspective
in addition to the project-wide description in the forthcoming deliverable D.A.9 ”Description of
overall prototyping use cases, scenarios and integration points”.

The SAIL project aims at compelling, prototype-based evidence that its research results and
innovations will inspire the Network of the Future. To achieve this by the end of the project,
we use a more agile approach than usually done in a research project. In a first phase (until
project month 18), the prototyping activities have early started from a bottom-up perspective,
both at partner and WP levels, with minimal overall planning and cross-task specification work.
This allows an immediate transfer of experience gained in early phases to the second project phase
(month 19-30).

The practical evaluation work in WP OConS started with the design and realization of a first
experimental project phase (Phasel), driven by early demonstration and experimentation activities
of the partners accompanying the OConS technical framework definition, which resulted in inter-
mediate demonstration show cases. These results were presented at the project-internal workshop
in January 2012 (project month 18).

Based on these components and the gained experience, this document now defines the further step
of OConS prototype and demonstration activities which focuses in a Phase2 (project month 19-30)
on the updated use case scenarios (from D.C.1-Addendum [2]), the workpackage internal coopera-
tion based on the progress of the OConS architectural framework, and the cross-WP cooperation
with CloNe and NetInf.

The plans given here are aiming at the final realizations at the project end.

The document is structured as follows. We continue the introduction with a recapitulation of
the initial clustering of prototyping and experimentation activities as defined at project start. This
view was based on the project-wide use case scenarios of D.A.1 [3] and their WP-specific versions in
D.C.1 [4]. Then we describe how the use cases and technical focus of OConS as a starting point of
Phase2 demonstration activities have been revised due to the more mature discussions and updates
contained in D.C.1-Addendum [2].

Chapter 2 gives a technical description of the OConS prototype building blocks in terms of
motivation, functionality, component architectures, realization details, interfaces and services, and
demonstration show-cases. This is mainly based on the realization experience for the Lisbon work-
shop activities in January 2012, however also paves the way for the extention of the components
by the project end.

A deeper analysis of the updated OConS scenarios and use cases of the D.C.1-Addendum is
given in chapter 3. For the purpose of deriving the essential OConS services to practically support
and demonstrate OConS aspects, we focus on the "mobile access and datacentre interconnection
use case” for supporting CloNe and the "mobile and multi-P for information centric networks use

SAIL Public 1

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
Date: August 15, 2012 Security: Public l\\\
Status: Final Version: 1.1 SAIlL

case” for supporting NetInf. The cross-WP considerations are based on the documents D.B.1 [5],
D.B.2 [6] for NetInf, and the architecture document D.D.1 [7] for CloNe.

The results of the OConS analysis and the discussions with the workpackages CloNe and NetInf
with respect to a final OConS demonstrator design are described in chapter 4. OConS approaches
requiring support by prototyping activities are the generic connectivity mechanisms, architectural
decomposition into Information Management Entitys (IEs), Decision Making Entitys (DEs) and
Execution and Enforcement Entitys (EEs), and the OConS orchestration mechanism.

Finally, chapter 5 will give the final plans for integration and cross-WP cooperation together
with the cross-WP integration points, as agreed in the cross-WP meetings.

1.1 Phase 1: OConS Initial Prototyping and Demonstration Activities
until Lisbon Workshop

At project start, OConS identified a few basic use cases that gave the orientation for the first phase
of (bottom-up) prototyping activities.

1. UseCase#C.1: Wireless challenged networks

A heterogeneous set of wireless nodes is willing to build a network to provide to end-users
connectivity between them and towards a fixed Internet infrastructure in an adverse envi-
ronment. Support extra-low-bandwidth and delay-tolerant services (e.g. SMS, Facebook
updates, E-mails) which shall satisfy the communication needs of the majority of the people.

2. UseCase#C.2: Use of multi-path multi-protocol transport to optimize services
with heterogeneous content

The heterogeneous services could include: e.g., uploading videos of the event or accident,
downloading the same video or news about the same event (both people on site and others
may be interested in the content which is uploaded); chat, VoIP or other applications may also
used simultaneously. To reflect the technical challenges which arise from the use of MultiP
techniques: congestion control, multi-cast trees, etc

3. UseCase#C.3: Optimize QoE for end user, cloud and operator services

There are a number of available networks and a number of services provided to end users.
E.g. 3G/anyG, mobile WiMax, Wi-Fi infrastructure mode. A self organised community mesh
network in a pedestrian / public space location could complement the available communica-
tion means. Finally, ad-hoc networks e.g. using Wi-Fi Direct may also be available. Optional
technology or power failure may disable one or more technologies.

4. UseCase#C.4: (Autonomous) Interoperation and connectivity of Cloud and Net-
inf datacentres

Shows how end-user needs/actions create a demand for connectivity between distributed
Cloud and Netinf data/service centres (acting as aggregators for a group of end users on
the core infrastructure side), which is not necessarily triggered directly by end user actions.
OConS functional entities themselves (e.g., mobility mgmt., resource mgmt., and so on) can
be placed and moved depending on various topological or resource constraints.

These use cases were supported by the following clusters of prototyping activities:
1. Cluster: Challenged wireless environment (UseCase#C.1)

e Distributed routing and forwarding protocol for Delay/Disruptive Tolerant Networks:

2 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
l\\\ Date: August 15, 2012 Security: Public
SA I L Status: Final Version: 1.1

— based on self-learning and self-management techniques from each node’s dynamic
environment (for mobile resource-constraint devices)

2. Cluster: End-to-end multipath transport (UseCase#C.2)
e Multi-path support for content delivery in information centric networks:

— transport mechanisms in wireless and wired network entities using multiple paths
to carry content to required locations

— extending current ICN-like implementation with multipath capabilities
e End-to-end multi-path management for mobile transport (UseCase#C.2 and C.3):

— multi-path transport protocols (incl. multi-congestion control) adapting to media
content type for advanced apps e.g. web using HTML5

— mobile device decision making for congestion control, reliability, interface and wire-
less service provider (to maximise use of available resources and QoE)

3. Cluster: Mobile access networks (UseCase#C.3)
e Smart resource management for mobile OConS access:

— implementation of a subset of the OConS architecture, interfaces and signaling (with
more emphasis at the access part)

— smart selection of mobile access - higher layers
e Dynamic distributed mobility management:

— distributed mobility management scheme with dynamically allocated mobility an-
choring in access routers

— optimized mobile per-flow connectivity and forwarding functions related to the flash
crowd scenario

4. Cluster: datacentre interconnect between edge/core networks (UseCase#C.4)
e Interconnectivity of service datacentres:

— multi-layer control and protocols for path and flow optimization between distributed
datacentres (CloNe or NetInf nodes)

— client-to-network and cross-layer interaction of IP/MPLS routing and optical switch-
ing

— metro/core functionality for management and control of virtualized networks be-
tween DCs

e Inter-provider connectivity of Service datacentres:

— multi-layer control and protocols for path and flow optimization between distributed
datacentres based on OpenFlow concepts

— focus on inter-provider interfaces and protocols in OconS

1.2 Phase 2: Towards the Project-wide Flash Crowd Scenario

The scope of OConS connectivity mechanisms range from access to core networks. All OConS
mechanisms described in D.C.1 [4] can be orchestrated with each other to provide OConS connec-
tivity. Some of them can be used alternatively or optionally, but due to their common architecture
and interfaces they can be orchestrated as required.

SAIL Public 3

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
Date: August 15, 2012 Security: Public l\\\
Status: Final Version: 1.1 SAIlL

As examples of connectivity services to support innovative concepts such as CloNe and NetInf, we
focus on two use cases related with these, within the overall SAIL flash crowd scenario as presented
in D.A.1 [3]. Based on the requirements from CloNe/NetInf and available network resources, a
combination of OConS mechanisms is proposed to improve connectivity, showing the deployment
and the instantiation of OConS entities, mechanisms and control functions.

In the flash crowd scenario, depicted in Figure 1.1, a large number of users concurrently and
suddenly (e.g. due to a particular event) ask for connectivity and, in general, for network services, in
the very same geographical region. Multiple network operators might be available in that area, each
one deploying radio access networks with different technologies, e.g. 3G, LTE, WLAN, including
mesh and relays. Moreover, users are equipped with different terminals, and of course they are
mobile, i.e. they may frequently change their point of attachment. Finally, users access different
services, e.g. real-time services which download content or upload on-spot generated data. Several
OConS services can be therefore deployed on appropriate actors from this scenario to cope with the
extreme dynamicity, to provide enhanced end-user experience, and to optimize network resource
usage.

Content Cloud / Data Centres

<«—> Wireless access technologies
<«— > Wireless Challenged Networks
< - — Application Traffic (Multipath)
< e > Application Traffic

(limited to Challenged Network) Mobile Cloud
Data Centre
and Domain
Control Unit

Optimized Data-
Centre Interconnect

(""" Mobility Anchoring/Redirection
(1) Data Centre Interconnect

Mobile Cloud
Data Centre
and Domain

Operator A
domain

. /) :
— @ s’ Multi-Path
: @ Support for
ICN

- Operator B
f N\ domain pynamic Distributed
Domain - Mobility Management

Centralized
. Mobility
Optimisation
) .

DTN & Mesh
Support for ICN

/

Wireless N s -
Challenged, ¢ . L A . AP-B2
Network ? ~ D Multi-Path & Multi-Interface
Y N Support for oc and Path OConS
- Terminal ICN ons Selection i
ermina Terminal Terminal
! J L)
Y Y
OConS for Netinf OConS for CloNe

Figure 1.1: Flash Crowd scenario, illustrated with selected OConS services for two use cases

1.3 OConS for CloNe: Mobile Access and Datacentre Interconnection
Use Case

This use case specifically shows how the OConS provides enhanced connectivity services for Cloud
Networking (CloNe), both for enhanced wireless accesses (within a heterogeneous environment), as
well as for the core datacentre interconnection.

The mobile flash crowd scenario is characterised with spatial and temporal distributions that

4 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
l\\\ Date: August 15, 2012 Security: Public
SA I L Status: Final Version: 1.1

are largely not predictable. The management solutions of this scenario necessitate continuous
monitoring, flexible interacting decisions and enforced realization of resource allocations, which
exceed the capabilities of currently locally-acting autonomous mechanisms.

Furthermore, in this mobile flash crowd use case, we assume that there are resource short-comings
at the wireless interfaces (due to overcrowded spectrum and mobility management entities) as well
as at the access to popular community and content distribution services (represented by their cloud
gateways and datacentres), which require a strict management of all available resources between
both ends.

The OConS framework is applied to solve that challenge between different domains (wireless
providers, content/social community providers) at different connectivity levels (wireless access vs.
core connectivity) and in cooperation with CloNe management of cloud resources. In each of the
involved domains, OConS information elements are used to monitor and collect information on
available paths between clients and servers of their domain, as well as information on congestion
of the network and path availability.

As soon as the flash crowd happens, the OConS framework has to react on the sudden increase
of users requesting the very same premium content. Thus, the OConS framework can orchestrate
appropriate OConS services. This is decided by the DEs (possibly hosted on a domain-specific
OConS Control Unit) and enforced by the EEs implemented on servers, routers, switches, end-
terminals. As depicted in Figure 1.2, the orchestration of the OConS services considers the following
actions:

e Fnable multi-path transport services on the servers in the datacentre, to leverage all the
paths between clients and servers, in particular exploiting the least congested ones (see D.C.1
Section 5.2.1);

e Create new paths towards other instances of the same server, located in other datacentres,
communicating with DEs possibly in other domains, via OConS signalling (see D.C.1 Sec-
tion 5.2.3);

e Facilitate the handover of some users from congested to non-congested access networks by
interfacing with the DEs of the mobility management (see D.C.1 Sections 6.1.1 to 6.1.4),
where different users will be handled depending on their capabilities and technology;

e Set policies in user-terminals with multiple interfaces, enabling the simultaneous use of two
or more interfaces for load balancing purposes (see D.C.1 Section 5.2.7).

This example shows that coordination and execution of multiple OConS services can reduce the
congestion in different access networks and provide better Quality of Experience (QoE) for the flash
crowd users. Local replicas of the same server with improved connectivity can be made available
to users, which can be seen as part of an overall “cloud management” that interfaces with CloNe.

1.4 OConS for NetInf: Mobile and Multi-P for Information Centric
Networks Use Case

In this use case we illustrate how OConS provides connectivity services to Information-Centric
Networks (ICN) (in particular to NetInf), creating and sustaining the connectivity in challenged
wireless networks while using multi-path enhancements. We start with the assumption that there
is a street performer and someone likes his/her performance very much, so he/she spreads the word
through social networking, and a flash crowd is spontaneously gathered. Some people record and
upload the event to a social network (e.g. Facebook), spread the word about the video around and

SAIL Public 5

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
Date: August 15, 2012 Security: Public
Status: Final Version:

M.

SAIL

Data-Centre Interconnect

with Multi-P

Advanced Multi-layer,
Multi-Domain

e

DE

Network-Side

Gathering Paths characteristics

Mobility Management
Optimisations

Choose the paths and
Re-route traffic

EE

L - __7__

EE

L__‘___‘_
EE

EE

EE

I i

1 Mobility execution
— i |

... r___l__

Distributed Mobility ? DE DE

Management Decision

End-Terminals

! Interfaces characteristics | ’

| I - - o - -
gy glnfiniegl degl 8
Activate and switch interfaces |
— - — — - —
'e rdntalis’

IE EE IE EE

Figure 1.2: Mobile Access and Datacentre Interconnection Use Case

the flash crowd and other followers of the social network start to download the video, as well as

background information about the artist.

The users employ NetInf nodes caching, and forward the produced content based on their name
and locator. In this flash crowd some users have good connectivity, while others experience poor
or intermittent connections. OConS services can improve the connectivity of the flash crowd users,
which require a minimum reliability, a minimum QoE, and therefore, necessitate optimized resource
utilization. More specifically, the message forwarding functionality in each NetInf node needs to
be enhanced by OConS. Thus by collecting network information via the OConS IEs, the DE in
the OConS enhanced NetInf message forwarding function can decide to activate and configure the
OConS mechanisms using the appropriate EEs.

In this use case the following OConS functions are considered (Figure 1.3):

e OConS multipath connectivity services (see D.C.1 Section 5.2.4) can select the best multipath
strategy (distribution, splitting, and replication) to retrieve content to the mobile devices.
The selection and enforcement of these strategies are performed at the participant devices as

well as in the network.

e For poorly or temporarily disconnected users, OConS Delay Tolerant Network (DTN) routing
(see D.C.1 Section 7.2.2), OConS Mesh Networking (see D.C.1 Section 7.2.1), optimized
CQI channel allocation (see D.C.1 Section 7.1.2), and OConS Network Coding (see D.C.1
Section 5.1.2) can further improve the NetInf nodes connectivity.

Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
.\\\ Date: August 15, 2012 Security: Public
S AL Status: Final Version: 1.1

Multipath for ICN f

TN

| Actlvate Multi-Path l I Activate Multi- Path :

i S ' TTTTFETN
Network-Side EE EE EE EE

Multipath for ICN

| Gathering Paths characteristics

——---r--~""-
IE IE

I Gathering Paths characteristics

- SR

NetlInf

End-Terminals

I Multipath for ICN DE DE 4 DTN Routing |
Networkin /[L\ Z _/ Z_ _
I Interfaces/Paths characteristics lnterfaces/Paths characteristics | - =

_— 7 _Z ______ I Re Route l
I_MisffoLming | [/ | Act/vate Multi-Path / /LAct/vate Multi-Path \
/ / 4 ; TTATTY T TN N

EE EE EE EE EE EE EE

Figure 1.3: Mobile and Multi-P for Information Centric Networks use case

SAIL Public

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
Date: August 15, 2012 Security: Public l\\\
Status: Final Version: 1.1 SAIlL

2 Description of Prototype Building Blocks

This chapter describes the prototype and demonstration activities based on the specific partners’
contributions and building blocks as they were planned and realized in Phase 1 clusters (section
1.1); moreover, some of them have been shown and demonstrated during the Lisbon demo event in
last January. Likewise, we have tried for each specific descriptions to include the following;:

e functionality, purpose of the prototype, and how it contributes or relates to OConS
e component architecture (i.e., the description of sub-components/modules)

e realization details (platform, OS versions, programming language, etc.)

e internal and external interfaces (open’ protocols or services to be reused)

e basic use case(s) with the main steps followed (functional at an OConS level)

e demonstration and show-case aspects (e.g., including the environment needed to visualize the
OConS functionality)

Our prototyping activities mainly focus on the two use cases, ’OConS for CloNe’ (as detailed in
2.1 and 2.2), and '’OConS for NetInf’ (as presented in 2.3 and 2.4), as well as on some common
components that could be reused for both use cases (see 2.5).

In addition to these building blocks that are already available, we provide in chapters 4 and 5
what modifications are planned and on what we intend to work internally in WP-C to support the
two main use cases, CloNe and NetInf, respectively.

2.1 Building Block: OConS Flow-Based Domain Connectivity Control

2.1.1 Functionality and purpose of the prototype

The prototype realizes experimental concepts for flow-based connectivity control per (network or
technology) domain to be applied in multi-technology networks across layer3 routing, layer2 switch-
ing and in future even optical switching, especially with regard to control, management and algo-
rithmic flexibility. It aims at providing a testbed allowing experiments with new variants of path
and resource allocation algorithms and their interfaces in a realistic network environment, demon-
strating technical feasibility and gaining first performance measurements on processing delays,
complexity, and capacities.

The architecture under consideration introduces a unifying control element in each supported
network domain called the Domain Control Unit that separates the control functions from the data
forwarding functions by concentrating most of the control plane mechanisms and intelligence in a
single entity. The Domain Control Unit (DCU) combines concepts of OpenFlow-based controller,
Path Computation Entity and Traffic Engineering Database for topology /resource advertisement
and discovery as well as path computation and path/flow realization across multiple domains.

For experimentation purposes we follow an OpenFlow-like approach to realize a flexible and ex-
tensible test installation of multiple virtualized networking domains based on the Mininet examples.
This enables us to demonstrate intra- and inter-domain path computation and flow establishment

8 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
l\\\ Date: August 15, 2012 Security: Public
S AL Status: Final Version: 1.1

in a mixed environment of cooperating (layer2) switches and (layer3) routers in virtual and physical
networks, as it is common in the context of interconnectivity of large distributed datacentres and
cloud centres.

The current demo can show control and management of a data paths between endpoints in dis-
tributed remote (cloud) datacentres with inter-domain connectivity via web-based service and man-
agement interfaces from any browser (hence providing a Representational State Transfer (REST)-ful
DCU interface for service invocation and orchestration).

2.1.2 Component architecture with relevance to OConS architecture

How instances of DCU control servers and their clients communicate is shown in Figure 2.1, as well
as their role in the OConS architecture as IE, EE, and EE.

Intra- or inter- domain

. path computation, Inter-domain
Network Domain configuring domain nodes controller interface
forwar_ding (rou_ting,
swrt’chlng, labeling) | Execute iter- l
External . /S — domain decision |
xternal service 0 R g
interface DE e DE
T E | Collect inter-domain |
Store path ILnformation | DCU
link and DCU - - T—=-
node states
/ (Domain (E)nﬂ'ol Unit)
Controller-Client | Collect intra-domain | Execute intra- Adi t
Interfaces I:_nformat/on domam dec:s:an jacen
-———=/ _ __ - Gwn Network
Request intra- Domain Domain (Peer,
/ﬁomam decision p t Sub
————— arent, Sub-
External data / [—L| "Local node Layer)
interface DE | | forwarding
IE decision
Monitor link = EEL . k :
and adjacent ‘ P
s i fogwardmg
DCC-B —— DCC-I
(Domain Control Client — (Domain Control Client —
Border Forwarding Node) Interior Forwarding Node)

Figure 2.1: Domain control architecture - components and interfaces

The Domain Control Client (DCC) comes in two flavours. The border node DCC (DCC-B)
for inter domain connectivity and the domain internal DCC (DCC-I). The internal functional
architecture of the DCU and the interaction between its components is illustrated in Figure 2.2.

2.1.3 Description of components/modules of the prototype

The DCU is the control server consisting of several internal components, namely Dynamic Flow
Control (DFC), Advertising Supporting Function (ASF), Traffic Engineering Database (TED),
Path Computation Entity (PCE), Request Processing Entity (RPE) and the external interface
communication via Domain Control Protocol (DCUP) [8].

The RPE catches, interprets and coordinates incoming requests and converts them into the PCE
protocol language if needed. It transforms the incoming requests into a thread which keeps the
DCU and the TED stateless and allows for concurrent requests. Thus the RPE takes up the role of

SAIL Public 9

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3

Date: August 15, 2012 Security: Public l\\\
Status: Final Version: 1.1 SAIlL
Establish Domain Control Unit Resource and Topology Information

(Advertising mechanism)

forwarding
entry
. DFC
in table ASF

(to clients) 3
(9
% Establish path Store Resource anq
a | Topology Information
o)
g (e N I
= path [Get path
8 £ Deliver comp -
e : aths Reaasion
Trigger P v constraints
Path Reques path BCE
Path Request § computation

(from clients or
peer controllers) K

=/

Figure 2.2: Domain control architecture - internal DCU components

the Inter-Node Communication (INC) function. It identifies incoming messages and directs them
to the appropriate DCU internal entities, e.g. to the PCE DE.

The functionality is able to process unknown flow requests as well as explicit path set-ups. In
case of an explicit path set-up the DFC is directly triggered from the RPE to realize the path in
the NEs. If an unknown flow request arrives and an explicit path calculation is needed to serve
this request, the RPE triggers the PCE for path calculation.

The TED is the IE that persistently holds the current topology information, the current state
of the network resources, traffic parameter, user/provider policies of the local network domain
and pre-calculated (and continually updated) paths. In order to speed up the end-to-end path
construction, the TED is configured to contain a set of pre-calculated inter-domain paths. It is also
recommended that the TED stores a set of calculated paths, which guarantees quick availability of
paths in case of failure.

The ASF retrieves topology and resource information from the Network Elements (NEs), which
are supported from appropriate measurements in the NEs. Thereby the ASF fulfils the function
of the Orchestration Entity (OE), e.g. during the start-up phase of the network it registers all
DCCs of its domain. The ASF fills or modifies the appropriate entries in the TED. Beyond this,
the topology and resource advertising mechanism can be triggered by event, periodically or on
demand. In this way, the ASF assures that the TED is always kept up-to-date. However, for
scalability reasons it is important to balance the actuality and the number of advertisings with an
appropriate dynamic configuration of the advertising mechanism.

The PCE part is responsible for the computation of intra-domain and inter-domain network
paths. It is provided with current topology and resource information, with traffic parameters and
management policies, and feeds the forwarding tables in the remote NEs of the domain via the
DFC.

10 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
l\\\ Date: August 15, 2012 Security: Public
SA I L Status: Final Version: 1.1

2.1.4 Realization details

This prototype consists of the DCU controller and the network emulation.

The DCU controller is realized in a Java/Open Service Gateway Initiative (OSGI) Environment
which is embedded in an Eclipse (Helios) Integrated Development Environment (IDE) [9]. This
IDE runs on Linux as well as on Windows XP. In its functionality, it is based on and extending the
OpenFlow Controller 'Beacon’ [10].

The test network realization including the OpenFlow switches is realized by Mininet Virtual
Machines (VMs) [11]and virtual switches at distributed LINUX platforms (currently based on
Ubuntu 10.04 LTS).

For further details, including external service/data, controller-client, and inter-domain controller
interfaces, please see [8].

2.1.5 Internal and external interfaces, used protocols or services

As depicted in figure 2.2, the interfaces are the following:

e External service interface: REST-ful control interface based on AJAX web technology, pro-
vides the Graphical User Interface (GUI) for the controller in any web browser (HTML, http,
JSON coded).

e Inter-domain controller interface: uses the same data coding and functions as the service
interface, just without GUI presentation. Can be invoked by functions like 'wget’ and ’curl’
with respective parameter sets.

e Controller-Client Interfaces: uses the OpenFlow controller to OpenFlow switch protocol V1.0
or V1.1.

e External data interface: data plane interface with IP-Ethernet stack.

2.1.6 Demonstration and show-cases

The current prototype version realizes the following basic functionalities:

We show a virtual network testbed with three network domains and their controllers, physically
connected to each other via dedicated attachment points for control and data plane.

Triggered by data traffic (via the external data interface), or managed by a web interface to the
domain controller, flows can be set up, monitored and released within the own network domain
(intra-domain), realized by a virtual network testbed (including the switching/routing clients).

The domain controller monitors availability of any switching client and connecting link in the
network domain, also performance (QoS) of active flows, and can rearrange flows in case of degra-
dation.

In the inter-domain flow set-up, we use a separate 'umbrella’ controller that only has knowledge
about the inter-domain connectivity via the attachment points form the external view, and provides
the necessary inter-domain controller communication (on domain membership of certain nodes, and
possible sub-flows between the domain edges).

The controller web interface shows network states in terms of active flow tables, available network
resource tables and visualizes actual flows on the network topology, for its own domain. The
‘umbrella’ controller shows the same features on an abstract inter-domain topology, without details
of the involved sub-domains.

SAIL Public 11

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
Date: August 15, 2012 Security: Public l\\\
Status: Final Version: 1.1 SAIlL

By orchestrating the plug-ins of the controllers, different routing algorithms can be activated on
the fly such as ’shortest path’, or ’constraint-based routing’.

For further demonstration and show cases (in phase 2), we develop an demo application to drive
the basic functionalities above.

Video processing is used to demonstrate the internal functionality. We implement two end users
each watching a video. For the video processing an appropriate processing amount on certain
processing units has to be reserved inside the Mobile Cloud Datacentre. Moreover the links to
and inside the Mobile Cloud Datacentre service have to be established and monitored. All this
is orchestrated and managed by a DCU. This DCU is the control entity that collects (IE) the
needed information about current load of processing resources and link resources. Using a resource
allocation algorithm the DCU DE decides on which processing resources the users are processed
inside the Mobile Cloud Datacentre. Thereby the video flows can be switched over to other resources
using other paths if needed. Connectivity changes are enforced (EE) by the DCU in the DCU clients.

In the demonstrator we cannot implement a full cloud data processing chain. Thus we choose
the video processing analogue above to show that tight time constraints can be met and the needed
processing units can be distributed remotely in the cloud and also connected in a flexible way.

12 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
l\\\ Date: August 15, 2012 Security: Public
SA I L Status: Final Version: 1.1

2.2 Building Block: Interconnecting Datacentres using OpenFlow

OpenFlow is taking up as a way of providing a unified control plane for future networks. The use
case of OpenFlow in the datacentre has been presented by Google in the 2012 Open Networking
Summit. The objective of this contribution is to provide a proof-of-concept for OpenFlow in the
Core Network interconnecting datacentres and spreading computing and storage power from the
Datacentre to the Network and describing this new network functionality as an Open Connectivity
Service (OConS). This work takes advantage of some of the functionalities provided by Cloud
Networking (CloNe) and therefore is one of the components in the cross workpackage work between
WP-C and WP-D.

2.2.1 Functionality

The prototype building block demonstrates the interconnection between datacentres using OConS
connectivity services. Current approaches in order to offer datacentre interconnection are based
on complex networking L2 and L3-VPN hardware solutions which are a difficult to manage and
undermine its scalability.

’.1 o e

Computing and storage Expensive equipment
(usually virtualised)

Figure 2.3: Current Infrastructure As A Service solution - Datacentre technical solution

The use case proposed and implemented here shows how an OConS based on OpenFlow as
technical solution can implement the datacentre interconnection use case, using an infrastructure
that implements multi-path transport services in a distributed/collaborative architecture. The
OpenFlow-based OConS allows to implement a network interconnection datacentres that is a dis-
tributed datacentre itself. OpenFlow provides a potential solution for some of the limitations
identified in datacentres and helps lowering the entry barrier to “programming the network” solu-
tions. The use of OpenFlow removes some expensive network elements (i.e. firewalls are substituted
by the flow specification embedded in the OConS) and simplifies both control and management
planes. In the datacentre, the OpenFlow based OConS also provides a means for a tag-less imple-
mentation for current Infrastructure as a Service (IaaS) services that is cheaper and more scalable
than state-of-the-art hardware based solutions.

The current state of the demonstrator shows how it is possible to define and manage an IaaS
solution that controls the connection of different datacentre resources such as hosts, switches, etc.
over inter-domain environments using NetFlow and FlowVisor as a Network Slicing Solution. On
a first stage we implemented an environment based on Mininet on a virtualized environment that
can be run on a PC for easy demonstration purposes. In parallel, we also have implemented a
demonstrator based on general-purpose hardware. Both environments are controlled via a GUI
that enables us to demonstrate the different technologies in a user friendly environment.

SAIL Public 13

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
Date: August 15, 2012 Security: Public M.
Status: Final Version: 1.1

{3
< <
4 e = o

Computing and storage Openkl tch Computing element running
(usually virtualised) pENFiow switc controller instances

SAIL

Figure 2.4: Proposed Infrastructure As A Service solution - Datacentre technical solution

2.2.2 Component Architecture

This demo integrates different elements of the OConS infrastructure into the OpenFlow-based
Datacentre implementation. Figure 2.5 shows how the integration works.

sends configs
EE
|OF
| v« 1
' < Communication
DE .
—> with the user
owVisor retrieves flow T l
.. table entries

Figure 2.5: Integration of OConS elements in the OpenFlow Data Centre infrastructure

The Information Management Entity (IE) contains all the information of the service. In the

integration with the OpenFlow enabled datacentre, the IE interfaces with the database that hold
the description of the infrastructure.

The Decision Making Entity (DE) receives requests, checks whether the service is available in the
datacentre and whether resources are available to complete the service request. In case resources

to successfully complete the request are available, it progresses the request as a sequence of request
fragments to the EE.

14 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
l\\\ Date: August 15, 2012 Security: Public
SAI L Status: Final Version: 1.1

The Execution and Enforcement Entity (EE) interfaces with the FlowVisor and the different
OpenFlow Controllers. It sends the request fragments related to client isolation to the FlowVisor
and request fragments related to the implementation of the service for a specific client to the
OpenFlow controller associated with it.

2.2.3 Description of Components
2.2.3.1 Information Management Entity

The IE interfaces with the OpenFlow Controllers and the FlowVisor. It collects the active flows
from the switches.

2.2.3.2 Decision Making Entity

The DE interfaces with the OpenFlow infrastructure and the external interfaces defined in WP-D.
It receives queries for new OpenFlow paths, computes the best path in the infrastructure, hands
this information to the EE and sends the result received from it to the external interfaces.

2.2.3.3 Execution and Enforcement Entity

The EE interfaces the DE with the OpenFlow infrastructure. It sends the OpenFlow path estab-
lishment commands to the OpenFlow controllers and the FlowVisor and sends their responses to
the DE.

2.2.4 Implementation details

The current implementation of the different OConS and CloNe components is OS and system
neutral. We use Python 2.6 as the basic programming language to interface to the OpenFlow
elements in the infrastructure.

The current version of the prototype interfaces both with a Mininet [11] ’OpenFlow in a box’
demonstrator running in a VirtualBox [12] environment and a hardware infrastructure with nodes
that provide networking and datacentre capabilities based on the XEN hypervisor [13]. This vir-
tualization platform integrates an OpenFlow switch implementation known as OpenVSwitch.

2.2.5 Demonstration use cases

The current prototype integrates into the Mobile Datacentre demonstration. Currently, it demon-
strates how a Datacentre can be implemented using OpenFlow. At the end of the project, it is
expected to demonstrate how OpenFlow can be used to implement the networking component of
Open Connectivity Services and how OConS can provide an interface that fully integrates the
Datacentre into a providers network infrastructure.

SAIL Public 15

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
Date: August 15, 2012 Security: Public l\\\
Status: Final Version: 1.1 SAIlL

2.3 Building Block: Multi-path Content Delivery for Information
Centric Networks with OConS

2.3.1 Functionality

Multi-path connectivity to networks in modern computing devices is becoming the norm in today’s
computing. These multiple paths can be used in many ways that benefit the users of these devices
as well as the different service providers involved. The ICN architectures that are currently being
defined have considered the use of multiple paths natively. Though these architectures provide the
use of multiple paths simultaneously, no formal mechanisms have been defined to utilize them in
the best possible manner. The architecture and prototype developed here demonstrates the use of
a number of multi-path strategies for ICN through the functionality of the OConS framework to
retrieve and deliver content in the best possible manner.

2.3.2 Component Architecture with Relevance to OConS

The architecture of the prototype consist of a number of components that interact with each other to
effect the selection and the implementation of multi-path strategies. These components, that follow
the functionality of the OConS framework extend the operations of the overlaid ICN architecture
to perform the multi-path operations.

ICN Architecture
OConS Multi-path Extensions

Transport Network

Figure 2.6: Protocol Stack (Generic Architecture)

Figure 2.6 shows how the extensions are positioned in terms of the layers of the protocol stacks
of current ICN architectures. These extensions, operating as a shim layer between the ICN layer
and the lower layers that provide transport connectivity implements the OConS components to
perform multi-path.

The OConS DEs, located at selected locations of the ICN network identify the appropriate
strategy to adopt based on the information provided by the IEs. There are 3 categories of strategies
that the DEs can make.

e Distribution Strategy
e Splitting Strategy
e Replication Strategy
Each of these high level strategies have sub strategies. The details of these strategies are held in
a repository in terms of rules that consist of conditions and actions. Regular receipt of information

will result in re-evaluating the conditions and implementing new decisions. The EEs are located in
the user terminals and in the network.

16 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
l\\\ Date: August 15, 2012 Security: Public
SA I L Status: Final Version: 1.1

2.3.3 Description of Components of the Prototype

The first prototype is based on Content-Centric Networking (CCN) architecture as an exempli-
fication of an ICN approach; it follows a modular architecture residing at different parts of the
network.

Information collection modules - The information collection modules provide changes to
the information held by the ICN node in which the collection occurs. These include expiration
information to requests for content and current path information. This information is passed on
to decision elements to be used in rule evaluations. This module has a number of sub modules
that focus on collecting information of a specific type. This modular architecture is extensible in a
way that every time a newer type of information needs to be collected, a new specialized module
is developed and plugged in.

Decision modules - The decision modules hold a repository of the defined rules and re-evaluate
them every time the required information is received. Once a new course of action (i.e. strategy)
is identified, it is informed to the enforcement modules to implemented them.

Enforcement modules - The enforcement modules interact with the decision modules to re-
trieve the decisions and then implement it at the location where the module resides. The imple-
mentation is specific to each of the ICN architectures that these multi-path extensions support. In
the initial version of the prototype, a CCN base enforcement module is used as the overlaid ICN
architecture is based on CCN.

2.3.4 Realization Details

The prototype is Linux based and a simplified ICN architecture is developed and used to extend for
the OConS functionality. A video application is used to show the benefits of using multiple paths.
Figure 2.7 shows how the prototype is operated in a test-bed where a terminal oriented scenario of
making multi-path decisions is used.

Content
Server
MP Extensions

ICN Client

ICN Network
(Caches/Routers)

Figure 2.7: Realization of Extensions

The realization details are as follows.

e Operating System: Linux 2.6 or above based

e ICN Architecture: Simplified CCN implementation (uccn version 0.1), developed in C

e Video Streaming: CCN based video streaming wrapper for VLC

e Multi-path Extensions: IE, DE and EE functionality user terminal based and developed in C

SAIL Public 17

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
Date: August 15, 2012 Security: Public l\\\
Status: Final Version: 1.1 SAIlL

2.3.5 Internal and External Interfaces

A number of interfaces are used by the prototype to obtain information and enforce the decisions.
These interfaces are implemented through the overlaid ICN architecture that carries the messages
back and forth.

The external interfaces mainly relates to the interfaces to the ICN architecture. They include
retrieval of information about the status of the ICN operations. These interfaces are handled
by the information collection modules. The other type of external interfaces are handled by the
enforcement modules to control the ICN to implement the different multi-path strategies decided
upon by the decision modules.

There are a number of internal interfaces that are related to the OConS framework. These
interfaces are used to communicate information and decisions between the information collection
modules, decision modules and the enforcement modules.

2.3.6 Demonstration Use-case

The primary use case that is used to demonstrate the benefits of these extensions is the Flash
Crowd scenario.

2.4 Building Block: DTN routing based on adaptive learning from
historical encounters with OConS$S

Exploring self-* properties of nodes belonging to a Delay Tolerant Network (DTN) and learning from
neighbour encounters (context awareness), becomes of a great value in order to design an optimized
transport strategy to improve service performance in this specific type of networks. Connectivity
in DTN scenarios implies that nodes do not have permanent physical paths to certain destinations,
but only to some of their closest neighbours instead. This work aims at the development and
implementation of a mechanism that helps the node take a decision regarding packet routing and
forwarding. There is a wide range of combinations that could be validated for several specific
situations where delay tolerant transmissions would be optimized so as to be characterised by
a certain expected Quality of Service (QoS). Our aim is to design and implement a prototype
that makes use of a valuable subset of these properties and is able to exploit them for a smart
management of the connectivity in DTNs formed by human-carried devices.

We propose a novel protocol, based on people’s social routines, which introduces some enhance-
ments to solve the problems detected with the use of Probabilistic Routing Protocol based on
Historical EncounTers (PRoPHET) in certain environments studied. Our mechanism also infers
the social behaviour of nodes from the history of contacts but unlike [14], incorporates the contact
duration to the information retrieved from historical encounters among neighbours. It also modifies
the assignation of direct probabilities in [14], introducing a mathematical equation that evaluates
the quality of the contact. The specification of this solution is based on the outcomes of a thor-
ough experiment performed in a working environment, which collected contact traces of 56 human
carried devices in the same office building during several weeks. The analysis carried out over the
voluminous contact database obtained from [15], highlighted the importance of distinguishing be-
tween short and long contacts and deriving mathematical relations in order to optimally prioritize
the available routes to a destination. Some simulation results, as compared with the performance of
PRoPHET for the same scenarios, are summarised in [16] (paper submitted to CHANTS workshop).

18 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
l\\\ Date: August 15, 2012 Security: Public
SA I L Status: Final Version: 1.1

2.4.1 Functionality

When a DTN node receives a packet addressed to a certain destination, a set of steps are triggered
in order to find the most suitable way of reaching this destination node. The easiest situation
(apart from being the destination node) would be that the destination is one of the node’s direct
neighbours: in that case, the packet is just at one hop distance from its final destination, and there
is a physical connection available. Otherwise, the node will need to analyse its available routing
information and take an action according to one or several of the following aspects: accept or
discard the packet (buffer constraints), store the packet and wait for a suitable forwarding instant
(based on the probability of reaching the destination node within a certain time period), forward
the packet immediately to an intermediate node with higher probability of finding the destination
(based on connectivity or mobility pattern estimation, self-learning parameters...), combine the
packet with other previously stored ones headed to the same destination node (related to Network
Coding techniques), etc. The prototype presented in this section is aimed to show how this routing
decision can be performed using inter-contact and contact duration times of historical encounters
among neighbour nodes in a DTN. This mechanism is based on probabilistic routing techniques,
although it incorporates the contact duration of encounters (not considered in previous approaches),
and it proposes a novel reasoning algorithm for a DTN node to estimate the rating probabilities of
possible paths to a certain destination.

2.4.2 Component Architecture with Relevance to OConS

OConS architecture is based on the entities described as Information Management Entity (IE),
Decision Making Entity (DE) and Execution and Enforcement Entity (EE). As per the inherent
nature of the connectivity established in a DTN environment, each node becomes an autonomous
entity and all mechanisms are performed in a hop-by-hop basis, since the end-to-end concept is no
longer true and/or available. Figure 2.8 represents a possible OConS scenario, where several nodes
are part of a mobile DTN and eventually one OConS terminal (Node C) might have access to the
outside world (i.e. the Internet) through a wireless technology interface (apart from its available
DTN physical interface, which might be based on the same or different wireless technology).

o] Ll
S

DTN Node

<—— DTN communication
...... Wireless access technology
<« ¢+ + » Application Traffic (DTN limited)

Figure 2.8: Generic architecture for components in a DTN scenario

SAIL Public 19

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
Date: August 15, 2012 Security: Public l\\\
Status: Final Version: 1.1 SAIlL

In this case, the three OConS components of the architecture are present in every single node
belonging to the DTN: IEs are the components responsible for interchanging information regarding
previous encounters and estimated path-ratings with neighbouring nodes; DEs are those in charge
of performing the proposed decision algorithm and come up with rating values for all possible
learned paths; and EEs are the components that execute the forwarding of pending packets to
a certain destination, via the best next hop, previously decided (node with the highest rating
value) by the DE. In Figure 2.8 Node A must find a physical path for reaching Node C and gain
access to the outside world. Let us assume that every DTN node in the scenario is aware of the
capability of Node C for accessing the Internet. If Node A demands a specific content (e.g. a video
from Youtube) from the Internet, it will need to decide how to reach Node C (i.e. decide which
intermediate neighbour would probably contact Node C faster, or in a more reliable way). DTN
nodes are mobile, and they might be storing information about who contacts whom, with which
frequency and for how long. Once Node A contacts Node B, they exchange information about the
probability with which they expect to see Node C ’in person’ (this probability is based on their
own previous contacts with Node C, or on learned probabilities from intermediate nodes). If the
probability of Node B for reaching Node C is higher than the one stored by Node A, the latter will
forward its packet (headed to Node C) to the former. Also, Node A would store Node B as its best
next hop, for packets headed to Node C, in its routing table. If a new direct neighbour contacted
Node A and provided a better probability value for Node C, this would be updated accordingly
(adaptive learning process).

2.4.3 Description of Components of the Prototype

The overall process implemented in a DTN node can be represented by the steps sketched in
Figure 2.9.

‘ NEW CONNECTION ‘

(1) UPDATE P_(A,B)
(new Tinter)

‘ (2) UPDATE P_(A,C) ‘

(3) UPDATE OTHER POSSIBLE CONNECTED
HOSTs

‘ (4) MESSAGE EXGHANGE ‘

‘ DISCONNECTION ‘

UPDATE P(A,B)
(new Tintra)

Figure 2.9: Flow Chart of the mechanism implemented in a DTN node

Figure 2.9 shows the flow chart of the whole mechanism from a node’s perspective, node A, when it
detects a new physical connection to node B. P_(A,B) is the direct probability of node A contacting
its neighbour node B, and updated with the inter-contact time since their last encounter (new
Tinter). After that, node A would update the values of non-direct probabilities, P_(A,C), learned
through transitivity (node B informs about its probability of reaching the rest of nodes, represented

20 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
l\\\ Date: August 15, 2012 Security: Public
SA I L Status: Final Version: 1.1

here by letter C). Node A checks if other possible connections are detected simultaneously (other
direct neighbours) in order to update the values of its own direct probabilities, before it exchanges
this information with node B. If physical connection with node B is lost (disconnection), the value
of P_(A,B) is also updated with the last contact duration (new Tintra).

Each of these steps is implemented by a specific sequence of methods and algorithms. As an
example, Figure 2.10 shows the detail of how a Decision Element (DE) would estimate a direct

probability P_(A,B).

1st

CONNECTION
&&

NO P_(A,B)?

YES

P_(A,B)_now = P_INIT

F(r)™

B:@—Fﬂy

CALC P_(A,B)_table

P_(A,B)_now = 2 P_(A,B)_pre + 2
P_(A,B)_table

Figure 2.10: Detail of the assignment of direct probabilities

In this flow chart, the formula of B (Goodness) represents the way of measuring a neighbour’s
quality (direct rating algorithm). In this formula two parameters have been considered: the fre-
quency of contacts, or the inverse value of inter-contact time; and the contact duration, between
two neighbours. Considering both parameters normalized to the same period, F and T would
represent the weighted mean of historical values stored by the nodes. The process of estimating
a representative mean value (both for inter-contact and contact times) is based on the statistical
features that characterise both mathematical distributions.

2.4.4 Realization Details

Figure 2.8 shows the targeted scenario for the demonstration of this prototype. The realization of
the described mechanism is aimed to be released for Android phones, but could also run on laptops.
The realization details are as follows.

e Operating System: Android 2.2 or above based

Routing protocol implementation: social routing (PRoPHET based) implementation, devel-
oped in Java, taking the Bytewalla3 project release as a basis [17]

Optional Bundle Protocol Query (BPQ) Extension [18]: BPQ functionality to be developed
in Java and integrated into the Bundle Protocol implementation of the Bytewalla3 project

e DTVideo service: simplified video service implemented over Android phones

SAIL Public 21

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
Date: August 15, 2012 Security: Public l\\\
Status: Final Version: 1.1 SAIlL

2.4.5 Internal and External Interfaces

As stated in section 2.4.1, all components of the OConS architecture are implemented on every
DTN node of this prototype. This way, Information, Decision and Enforcement Elements are
internal components of a node, and could be seen as sets of functions interacting both with their
peer components of different nodes, and with other component within the same node. Moreover,
the interfaces playing a role in this prototype are the following:

e [E-IE: this is an interface between peer components of different nodes. Messages exchanged
include information about node identification and stored probability values of reaching third
parties (DTN nodes not directly connected at the time, not direct neighbours)

e [E-DE: this is an internal interface within a single entity. The IE component informs to the
DE about probability values learned through transitivity, and also about parameters collected
from direct encounters. The IE stores both the inter-contact and the contact duration times,
which are used by the DE for the estimation of direct probabilities

e DE-EE: this is an internal interface through which the DE delivers a forwarding petition to
the EE. Whenever a node has pending packets to be sent, the DE makes an order to the EE
with the physical connection to be established (according to the rating process executed and
the highest probability value for reaching the destination node)

The external interfaces mainly relates to the Bundle Protocol implementation for the realization
of the prototype. They include the interface to the application service used for demonstration and,
eventually, interface to specific module implementations (i.e. [18]).

2.4.6 Demonstration Use-case

The primary use case that is used to demonstrate the benefits of these extensions is the Flash
Crowd scenario.

22 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
l\\\ Date: August 15, 2012 Security: Public
SA I L Status: Final Version: 1.1

2.5 Building Block: Distributed Access Selection and Mobility
Decision with OConS

2.5.1 Functionality and purpose of the prototype

This demonstrator aims at assessing the feasibility of the OConS architecture, which is challenged
to bring about a dynamic and distributed mobility management. The demo embraces different
mobility-related procedures, which are triggered by various events, coming from various sources
(e.g. high load situation at an access element, low link quality, etc). Completely based on the
OConS architecture, mechanisms and (signalling) protocols, the demo shows how the decisions are
taken on a distributed manner by the network nodes and the end-user terminals.

Since the main goal is to assess its feasibility, the information gathering, decision-making, and
execution procedures have been carried out according to the OConS architecture; in this sense,
they have followed the involved mechanisms, such as bootstrapping, discovering, etc. Some OConS
entities (Decision Making Entity (DE); Information Management Entity (IE); Ezecution and
Enforcement Entity (EE)) have been implemented within both the user terminal and the access
elements, and their appropriate operation has been validated.

2.5.2 Component architecture

From a networking perspective, as depicted on 2.11, the demonstration is composed of one user
terminal and a number of network access elements; all of them incorporate the OConS architecture
so as to enrich the decision-making mechanisms, considering the information gathered by the OConS
entities.

%) User Terminal

N)
l'é
AP1 ‘. DE Access selection
) AP2 algorithm
4 r -
l Link quality I
Py - T 5 =
/’ rFe - -
’ l Activate and switch interfaces |
IE R
EE

User Terminal

Figure 2.11: Component architecture

As general method, all entities are controlled by an additional component, which resembles the
role of the Inter-Node Communication (INC) process in general. In this sense, the rest of entities
(during the bootstrapping process) need to register to the INC. Afterwards, any entity might be
able to know the location of any other one either through the INC or by means of a dedicated
message sent by the INC, if it was configured to do so (see an illustrative example in 2.12). After
the registration has been completed, the inter-entity communication can be carried out.

The already available mechanisms include the bootstrapping, registration and discovering pro-
cesses, which are needed so as to later on leverage an enhanced access selection’.

LAt the time of writing, this is taken at the user-terminal side, but this will be extended so as to also consider the
access elements within the decisions process, including e.g. load information.

SAIL Public 23

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
Date: August 15, 2012 Security: Public l\\\
Status: Final Version: 1.1 SAIlL

Node

—
[
e
&
‘m

| []

(@]

| | Reg. Req. | |

I I I |

i i Reg.iReq. ”}

i } } Reg. Req. "}

| | e ~TIY .

i i | Not. Av.Ent. | |\ Bootstrapping
! ! — procedure

I I I I

I I I I

i i i -

\g Coan‘ Req ! !

* | i i

| | | |

! | Conf.Req. ! |] :

| | Configuration
I I

| I

I I

Figure 2.12: General registration process

The OConS implemented architecture consists on some entities which are able to establish the
optimum point of attachment to the network according to the information gathered by the corre-
sponding [Es. To do this, the end user terminal incorporates an IE, which is responsible for col-
lecting information about the available access elements and report it to the decision entity (DE).
Whenever the DE takes a decision, this is sent to the EE, which will instance the correspond-
ing mechanisms to enforce it, and change the connection to the selected access element. Finally,
once the connection is established the discovering mechanism is accomplished through the INCs
belonging each node.

2.5.3 Description of components/modules

At the time being, the demo consists on the basic access network shown in Figure 2.11. In ad-
dition, we have developed a GUI that eases the process of monitoring the overall demonstration
performance and operation. The GUI allows the monitoring of both the OConS mechanisms and
message exchanges, according to the OConS interfaces specification. In addition it can be used so
as to emulate certain situations, for the sake of a better tracing of the corresponding methods and
procedures, which would eventually lead to a handover event?.

2.5.4 Realization details

Regarding the details of the development, the whole demo has been implemented over regular
laptops®. Linuz/Ubuntu (stable version 10.04) has been used as the operating system, with the
2.6.32 — 28 — generic kernel. The implementation, which can be divided into two main streams,
uses two different programming languages; on the one hand the OConS architecture has been coded
in C++, while the GUI was implemented in JAVA. Furthermore, all the communications between
the different entities (between OConS modules and with the GUI) are socket-based.

2At the time of writing it specifically can modify the quality of the links with all the available access elements, so
as to force a handover situation whenever it is required.

3In this sense, the access elements use the hostap functionality so as to fully emulate the role of a regular Access
Point

24 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
.\\\ Date: August 15, 2012 Security: Public
SAI L Status: Final Version: 1.1

2.5.5 Internal and external interfaces

The interfacing between OConS entities is done by means of a proprietary protocol, which uses
Type Length Value (TLV) coding. It is somehow similar to the IEEE 802.21 (Media Independent
Handover) specification, although it has been tailored to better serve our purposes. Since the
currently available demonstration does not need any interaction with external entities nor services,
no specific external interface has been yet defined.

2.5.6 Available basic show-cases, demonstration use cases

At the moment the demo shows a step-by-step OConS bootstrapping process, which can be moni-
tored by the GUI. The various entities register to the Orchestration Entity, which facilitates the dis-
covery and registration processes. Afterwards, the demonstration show how the OConS framework
might bring about enhanced access selection procedures, by considering the information gathered
by the corresponding information entities and enforcing the appropriate decisions.

2.6 Building Block: Dynamic Distributed Mobility Execution with
OConS

2.6.1 Functionality and purpose of the prototype

The idea is to have a dynamic activation of mobility anchors in Access Routers (ARs), so that we
use direct IP routing of traffic flows/sessions initiated on mobile’s current Access Router, while
supporting handovers and traffic forwarding/tunnelling between the Access Routers (current and
previously used anchors ARs).

2.6.2 Component architecture with relevance to OConS

Focus here was put on the Mobility Execution Entity, see Figure 2.13. Thus, for the flash crowd
scenario, the optimal data path is used each time a new flow is launched, the forwarding/tunnelling
functions are activated only when needed to support flows’ delivery in mobility situations, and the
efficient connectivity (direct routing whenever possible).

2.6.3 Description of components and modules of the prototype

Several functions are needed on the Access Routers and on the Mobile Node (MN).

e Detection of the new applicative sessions: On MN we use Linux Conntrack to track the con-
nections and then in user space we have a function to wait for Netlink events from Conntrack;
we also check who initialized to connection, the mobile node or the correspondent. On the
AR, the detection of the new applicative session is done with pcap library.

e Detection and handling the handover (L2 and L3): The MN detects the radio handover at L2
(i.e., the new access point) by listening to control messages from Netlink framework, and then
the MN informs the current AR by sending a slightly modified ICMPv6 Router Solicitation
message and indicating the list of active applicative sessions (if any).

e Mounting the tunnels on the networking side and re-route traffic accordingly: On the current
AR, once we receive the RS we need to inform the previous ARs about the handover and

SAIL Public 25

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
Date: August 15, 2012 Security: Public l\\\
Status: Final Version: 1.1 SAIlL

Host-Router
+ Stream Server

ethO

2001:688:100::1/64 Bridge for

G, Virtual Machines
3

eth

eth0
2001: 102::1/64
2001:688:101::1/6: Q016 Q2::1/6
EE eth0
2001:688:103::1/64
——
EE
irtylalized-AR2 EE
VirtualizeAJAR1 ro
an " .
wlan0 hoot688:12: /64 Virulized-ARS
2001:68811}1/64 « lan0
G 2001:688:13::1/64
D-Link AP el i
SSID: dmat o 11'M$ae : D-Link AP3
: 1 Mode: g - -9 SSID: dma3
Ch: 6 Mode:

Mobile (OConS mobility decision) + Upload Streaming
2001:688:11::10 / 2001:688:12::10 / 2001:688:13::10

Figure 2.13: Dynamic Distributed Mobility Demo

to create the tunnels towards these ARs. This is done with a modified ICMPv6 Neighbour
Solicitation message. Then we build the new tunnel by adding a virtual network interface
and by indicating the two end-points of the tunnel and by attaching the tunnel to a real
NIC (e.g., eth0). The routing is also update accordingly using the ip6tables and the ip -6
rule/route commands.

2.6.4 Realization details

For the networking part, the code was developed in C under Linux/Fedora distribution (kernel
3.1.8). As for the radio part, we have used D-Link access points with Atheros chipsets and running
the hoastap demon in version 0.7.3.

2.6.5 Internal and external interfaces

As presented in a previous section, the internal interfaces for this mechanism reuses existing pro-
tocols, such as ICMPv6-based Router Solicitation and Neighbour Solicitation messages. As for
the external interface, the Dynamic Distributed Mobility mechanism is triggered by the lost of L2
Wi-Fi connection (i.e., a GUI button-push command for the time being to deassociate from the old
access point and to associate with the new one). Finally, note that this is done transparently for the
applications’ traffic, i.e., they continue to use the standard socket API without any modification.

2.6.6 Demonstration use case

A Linux-based [Pv6 prototype was implemented and it is available in a lab environment, using Wi-
Fi accesses and showing the dynamic per-flow mobility execution based on dynamic IPv6 tunnelling
establishment between APs/ARs (see Figure 2.13). The future plan is to integrate it with evolved
mobility decision entities using the OConS messages and the OConS orchestration functionalities
currently under development (see chapter 4).

26 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
.\\\ Date: August 15, 2012 Security: Public
SAI L Status: Final Version: 1.1

3 Analysis of OConS Scenarios

This chapter deals with the analysis of the revised use cases as developed in D.C.1-Addendum [2],
section 4, and lays the basis for the evolution of the prototype building blocks towards Phase 2 till
the end of the project.

We give a description of the selected sub-cases and decompose the use cases in smaller scenes,
using existing “basic OConS mechanisms”, or define additional ones, if required. Moreover, the
abstract OConS services and mechanisms to be used in each sub-case are identified according the
OConS terminology in terms of entities (IE, DE, and EE) and of service primitives (i.e., messages
at the interfaces).

The scenes that will be implemented, and those parts which are only needed to set up the
environment (pre-conditions) are also identified here, whereas the specific realization aspects will
be described in chapter 4.

3.1 OConS for CloNe: Mobile Access and Datacentre Interconnection
Use Case

Within the overall SAIL flash crowd scenario as presented in [3], we now consider a use case, where
a large number of mobile users concurrently and suddenly, e.g., due to a particular event, ask for
a wireless connectivity in a certain geographical region to contact their social community networks
for downloading or uploading certain multimedia content.

3.1.1 Create new paths towards other instances of the same server via OConS
signalling

For the future, we assume that the mobile network consisting of packet core network and Radio
Access Network (RAN) will be virtualized and “cloudified” to a large extent. In the RAN case this
means that the processing capacity, e.g. for baseband processing, user processing and cell related
processing will be hosted in a more cloud-oriented datacentre, while at the cell site only the so
called Remote Radio Heads (RRHs), containing the filter and amplifiers, are deployed.

Therefore we will use OConS concepts for connecting such datacentres (with specialized process-
ing) and managing the load and connectivity between them, as this specific case with many users
generates a flash crowd and, thus, challenges both the networking capacities as well as the available
processing resources.

Let us assume the following: a number of end users wants to watch a video on their mobile
phone, which in addition needs a personalized processing and adaption in a video processing node
in the (mobile access) cloud. Thus an appropriate processing amount on certain processing units
has to be reserved inside a mobile cloud datacentre for this large amount of users, and appropriate
paths need to be set up to the video source(s) of the content. The utilisation of the networking and
processing resources along these paths will be monitored by OConS. Once an overload situation
(in the processing path) is detected, OConS either will initiate a redirection of the assigned paths

SAIL Public 27

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
Date: August 15, 2012 Security: Public l\\\
Status: Final Version: 1.1 SAIlL

(to inter-connect the datacentres hosting the cloud application) or it will set up an additional path
over less loaded processing nodes (datacentres) that are served by this OConS domain. All this is
set up and managed by the cooperating and distributed DCUs servers, as entities that control the
resources assigned to the respective mobile cloud datacentre resources.

The OConS mechanisms used in this use case and offering the necessary services are describe
next:

e The overall reference model and control architecture for the Mobile Cloud Datacentre use
case was introduced in Figure 5.3 of D.C.1; accordingly, the placement of the OConS entities
on the controller-side DCU and within the DCU’s clients (DCC) is shown.

e The DCU is responsible for the control of one OConS domain (cf. chapter 3.2 from D.C.1
Addendum).

e Decision (DE) and information collection (IE) entities are realized in the DCUs placed within
the mobile cloud datacentre and the connecting OConS network domains.

e All three OConS entities (DE, IE, and EE) are used inside the clients DCCs of the respective
domains.

e The DCU interacts closely with the connected DCCs to collect intra OConS domain infor-
mation.

e The DCU also interacts with adjacent OConS domain DCUs to exchange inter-domain infor-
mation, e.g. on processing resources available remotely or link load between such processing
resources.

e Several attributes (chapter 6.1.1 in D.C.1) such as resources currently offered or network
quality of service (QoS), energy consumption and price (chapter 6.1.3 in D.C.1) can be used
by the resource allocation algorithm.

e When the appropriate information is collected by the DCCs and neighbour DCUs and a new
processing task has to be carried out, the calculation and acquisition of appropriate processing
resources and available network resources is performed by the resource allocation algorithm.

e When the network load changes, the DCU reacts accordingly thereby offloading processing in
overload or flash scenarios and providing a better data-path efficiency, service, QoS or other
target the operator has specified. This ensures an uninterrupted service for the users and also
an optimal usage of the operator’s network resources.

e In this way the network link load is influencing the instantiation of processing resources within
a Mobile Cloud Datacentre and at the same time is assuring service stability.

Furthermore, the OConS Orchestration mechanisms (including its Register and the Monitoring
functions) are employed to support the controller in the Mobile Cloud datacentre use case. Once the
OConS node internal entities are discovered, the Orchestration processes of other OConS-enabled
nodes must be discovered.

After that, all available network resources and capabilities have to be discovered and identified
and have to be made available to the DCU via the node internal Orchestration functions. The
discovery of a single resource, e.g. a baseband board or a general purpose CPU can run in parallel.
The DCU can then start the algorithms and mechanisms that control the used resources and assign
resources to incoming service requests accordingly. Then, the DCU monitors the resources for their
usage, e.g. for link, storage and CPU usage; for example, a smart access control and intelligent
load balancing algorithm can improve the system response and resource utilization.

The Mobile Cloud Datacentre DCU collects and identifies the available resources in its domain.

28 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
l\\\ Date: August 15, 2012 Security: Public
SA I L Status: Final Version: 1.1

The DCU also monitors current resource usage data using the OConS protocols and Orchestration
entities described above. The resource data can be the CPU usage for each processing board, the
storage usage on each board, the link usage between boards and even between different Mobile
Cloud Datacentre locations. Thereby the current bandwidth used, the delay, jitter and the current
error rate on the link can be of interest for assigning optimal resources. In addition, via the
Orchestration function, the DCU can react accordingly when application traffic changes, i.e. when
users enter or leave the Mobile Cloud Datacentre. Also the mobile network operator can prepare
the Mobile Cloud Datacentre in advance in case of an expected flash crowd, e.g. a soccer game or
the like. This of course not only needs a control interface between the DCU and the resources in
the network, but also a network management interface between the Mobile Cloud Datacentre and
the operators operations and maintenance centre.

We can say that the OConS Orchestration is responsible to find the processing resources and
connectivity resources that are available to the DCU; moreover, after having collected the required
data it has to continuously update the current state of the processing and connectivity resources
according to its usage. Thereby, in average, less processing resources shall be used for the Mobile
Cloud Datacentres as in today’s cellular networks. Furthermore the handling of a big flash crowd
of users is not possible today without using the elasticity of a Mobile Cloud Datacentre. Finally,
the interface of the end user towards the mobile system depends on the used mobile standard,
like LTE, UMTS, or GSM; however the interfaces between the involved Mobile Cloud Datacentre
functions are delivered within OConS.

When it comes to the implementation, we implement two end user instances each watching a
video; for the video processing an appropriate processing amount on certain processing units has to
be reserved inside the Mobile Cloud Datacentre. Moreover the links to and inside the Mobile Cloud
Datacentre service have to be established and monitored. All this is orchestrated and managed by a
Domain Control Unit (DCU). This DCU is the control entity that collects the needed information
about current load of processing resources and link resources by its integrated IE. Using a resource
allocation algorithm the DCU-DE decides on which processing resources the users are processed
inside the Mobile Cloud Datacentre. Thereby the video flows can be switched over to other resources
using other paths if needed. Connectivity changes are enforced by the DCU using the EE in the
domain clients (DCCs).

In the demonstrator, we will not implement a real LTE or UMTS radio processing application.
Thus we will choose the video processing analogue from above to show that tight time constraints
can be met and the needed processing units can be distributed remotely in the cloud and also
connected in a flexible way.

3.1.2 Facilitate users’ handover by interfacing with mobility management

The OConS framework provides an enhanced way to perform access selection, according to both
the current network status and user policies and preferences. In the mobile access to the Cloud,
the end-user might be able to select a connectivity alternative between a relatively large number of
options. In this sense, the information managed by OConS, together with the requirements coming
from the corresponding end-user, shall be taken into consideration so as to promote an optimum
selection. In addition, network and cloud operators (which in fact can be also seen as OConS users)
might benefit from the available management facilities.

As a first step (in fact, this step is needed in order to call any OConS service), the various entities
need to bootstrap. As a result of this, the Orchestration registry will compile information about
all available entities, and services and mechanisms which can be used with them. In particular,
regarding the access selection/handover procedures, all the management mobility-related function-

SAIL Public 29

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
Date: August 15, 2012 Security: Public l\\\
Status: Final Version: 1.1 SAIlL

alities (within IE, EE, and DE) shall be available within the appropriate nodes on both network
and user side, so as to support the appropriate mobility management services.

In particular, these can embrace the provision of information about link quality or traffic load
measurements, user profiles and requirements, thereby allowing OConS to take into account several
parameters when a particular connectivity request happens. For instance, if the current connectivity
configuration is not enough to address the requirements coming from the OConS user (for instance,
a datacentre controller), an automatic reconfiguration (i.e., OConS triggered) shall take place
without requiring the interaction with the corresponding user.

As can be seen, the OConS Orchestration plays a key role in the overall process; first, it discovers
the OConS entities which will be available and the services which can be offered by them, as well as
the appropriate configurations and combinations. Afterwards, the OConS entities and mechanisms
need to be properly combined, so as to appropriately offer the required services. This implies the
specification of adequate interfaces and signalling procedures between the involved parties.

In this particular case, OConS offers an enhanced access selection, which combines the require-
ments and policies of the end-user (and her services) with the particular conditions of the network,
thus leading to a clear distinction between the nature of the information which is used; we further
discussed below this process.

e On the user side, OConS mostly provides information concerning the type of service requested
by the user (together with its particular requirements) and her preferences or profiles. The
main goal is to keep the QoE, as well as ensuring the seamless continuity of the service
if needed. Various end-user policies or rules are to be considered, i.e., those establishing
the particular needs of the end-user according to some pre-established profiles (e.g., energy
saving, technology preference, pricing, security, etc.) and those giving the service/application
requirements (e.g., quality needed and minimum networking resources). Likewise, the above
parameters can be handled on different ways, either in isolation or combined, according to
a specific configuration (for instance, they might be weighted so as to modulate the decision
token within the end-node, being part of the overall and coordinated decision).

e On the other hand, the network is able to compile information about its current status as
well as considering end-users’ perspective (e.g. radio-link quality such as SNR/RSSI, network
delay, quality profile, etc.) and to take coordinated decisions considering a trade-off between
QoS, QoE and network management goals (for instance, load balancing).

In this case, the access selection OConS service is conceived to deal with multi-homed/multi-
interface devices, being able to handle flow mobility between different interfaces, to select and acti-
vate per-flow mobility anchors on network-side, and to set the right policies within user-terminals.

As can be seen from the above description, this OConS service is strongly based on the infor-
mation provided by the various IEs; in this sense, the bootstrapping shall discover all the elements
able to provide such information, and the mechanism shall be configured so as to establish which
of them shall be considered within the decision processes.

Once this is done, the DE must be able to interact both with the IEs, to retrieve the required
pieces of information; nonetheless, to cope also with multiple provider/operator cases, the ap-
propriate decision models where suggested, for example we can configure the OConS mobility
management service so that it is the end-user terminal that collects partial decisions coming from
several operators providing the radio access and then it integrates them with the locally constructed
decisions.

Then, the DE must be able to interact and with the EEs, so as to enforce the appropriate
decisions both within the end terminals and on the network side.

30 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
l\\\ Date: August 15, 2012 Security: Public
SAI L Status: Final Version: 1.1

The basic bootstrapping process, as well as the access selection and handover mechanisms, are
currently under development. These specific functionalities of the OConS framework is generic
enough so as to be used for various use cases and thus can provide benefits when the mobile access
is considered in conjunction with the CloNe. Accordingly, we can imagine that these access selection
and mobility functionalities interact more closely with the applications/services provided within
the datacentres and the datacentres/cloud “controllers”, for example, assuring service continuity
when necessary, better data-path efficiency through offloading and anchor selection, influencing the
instantiation of applications/services within a given datacentre, and so on.

3.2 0OConS for NetInf: Multi-P and DTN for Information Centric
Networks Use-Case

This scenario centres around the participants of a flash crowd that attempts to download content
related to a street performer. The networks to which the flash crowd connect are based on infor-
mation centric networking. The content related to the street performer is located in a number of
caches within the NetInf based network. The requests for the content by the users (flash crowd
participants) are resolved to a number of copies cached in the network and these different copies
are retrieved by the NetInf architecture used by the user’s device. The OConS mechanisms that
underlay the NetInf architecture assists the NetInf mechanisms to retrieve the content in the best
possible manner.

3.2.1 OConS Multi-path connectivity services for ICNs

This use case related to an integrated NetInf and OConS focuses on the benefits achieved by users
of the flash crowd when using multi-path. The devices of the users in the flash crowd are NetInf
based ICN devices. These users require content from different sources and the NetInf nodes contains
the OConS enabled convergence layer that will retrieve content from the identified sources. The
OConS enabled convergence layer adopts the best multi-path strategy to retrieve the content. The
multi-path strategy adopted is determined by the OConS based convergence layer that uses the
OConS framework functionality.

The users in the flash crowd are connected to a number of networks. Since the NetInf based
devices are capable of maintaining multiple attachments to the networks around the flash crowd,
the request for content will result in delivery of a number of locators for the copies cached in the
networks.

The sequence of actions that depict the use case/scenario involves a number of steps starting
from the request of the content to the final receipt of the content on the users’ devices.

e The content retrieval application requests for the content by providing a set of predicates;

These predicates are resolved by NetInf to a number of locators;

These locators are then used in selecting the appropriate multi-path strategy by the OConS
framework;

When the content is retrieved (part by part) they are made visible by the application to the
user.

Each of the networks that a user’s device connects to, has different characteristics. For example,
some networks maybe highly congested and some may be quite expensive to use. These character-
istics affect how the content is finally received at the user’s device and what multi-path strategy is

SAIL Public 31

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3

Date: August 15, 2012 Security: Public l\\\
Status: Final Version: 1.1 SAIlL
adopted.

3.2.2 Improve NetInf nodes connectivity by OConS DTN routing

OConS DTN routing is based on the social encounters occurred between nodes belonging to the
flash crowd scenario. We assume that some of the people gathered in front of the street performer
have downloaded (or locally produced) diverse content during the event: information about the
artist, videos, etc. Among this crowd, some nodes have not direct access to the Internet, so they
could get these pieces of information from neighbouring nodes instead. Also, not every single
node is permanently connected to every other node in the group, and so, a DTN environment
can be formed. If several people start moving away from the group, they could still spread the
content to new neighbours, not physically present in the flash event. DTN routing would resolve the
opportunistic path available to retrieve the requested content among contacting nodes through hop-
by-hop interactions, which otherwise could not have been established. Introducing one of the NetInf
concepts, the DTN routing could even be exploited in combination with ’content caching’ so that
requests from DTN nodes to get a specific content could be automatically served by intermediate
neighbours which already retrieved that same content and stored it. As a result, a benefit on the
overall performance of the communication network is obtained, as well as an alternative way of
spreading the flash crowd to reach a larger amount of people.

NetInf could benefit from OConS service for a DTN topology where permanent connectivity
cannot be assumed and the attachment of nodes to the network might be heterogeneous and in
some cases, not possible. Using the OConS DTN routing a NetInf node without a 3G connection
could improve its QoE in the flash crowd scenario: it could perceive almost the same available
content than if having access to the Internet. It is not based on a new service, but on the fact that
proximity-based connections among neighbours are used to spread content of the flash event. As a
differentiating feature, OConS DTN routing is not only based on probabilistic estimation, but also
combines information regarding the quality of a neighbour. As described in section 2.4, the OConS
algorithm is aimed at the rating of how good is a neighbour as candidate for “best next hop” in
the path towards a desired destination. According to this approach, the social behaviour of nodes
belonging to the DTN (involved in the flash crowd) influences the routing decision, so that links
among neighbours are reflected in the same way of a common social network in the path rating
process.

3.3 Common OConS support for CloNe and NetInf

In the previous sections, we have presented the way some particular OConS services can be indi-
vidually applied for either the CloNe or the NetInf use cases. There are, in addition, some other
functionalities which are common to the two use cases, able to support mechanisms which are
relevant for both of them. In particular, and considering the Event with Large Crowd scenario
requirements, there might be situations in which users want to establish connectivity by means of
wireless accesses. In this situation, the OConS framework provides an enhanced way to perform
access selection, according to both the current network status and user policies and preferences.
In the mobile access to the Cloud for instance, the end-user might be able to select a connectivity
alternative between a relatively large number of options. In this sense, the information managed
by OConS, together with the requirements coming from the corresponding end-user, shall be taken
into consideration so as to promote an optimum selection. In addition, network and cloud opera-
tors (which in fact can be also seen as OConS users) might benefit from the available management
facilities. Likewise, when a NetInf user is interested in retrieving a particular content, and once

32 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
l\\\ Date: August 15, 2012 Security: Public
SA I L Status: Final Version: 1.1

the corresponding functionality has identified the potential source nodes, OConS services can be
triggered, so as to support the decisions process and establish the best possible connectivity. Even-
tually, this might also require some mobility-related actions and therefore the corresponding service
might serve as well to deal with handover situations.

As a first step (in fact, this step is needed in order to call any OConS service), the various entities
need to bootstrap. As a result of this, the Orchestration registry will compile information about
all available entities, and services and mechanisms which can be used with them. In particular,
regarding the access selection/handover procedures, all the management mobility-related function-
alities (within IE, EE, and DE) shall be available within the appropriate nodes on both network
and user side, so as to support the appropriate mobility management services.

In particular, these can embrace the provision of information about link quality or traffic load
measurements, user profiles and requirements, thereby allowing OConS to take into account several
parameters when a particular connectivity request happens. For instance, if the current connectivity
configuration is not enough to address the requirements coming from the OConS user (for instance,
a datacentre controller or a NetInf user), an automatic reconfiguration (i.e., OConS triggered) shall
take place without requiring the interaction with the corresponding user.

As can be seen, the OConS Orchestration plays a key role in the overall process; first, it discovers
the OConS entities which will be available and the services which can be offered by them, as well as
the appropriate configurations and combinations. Afterwards, the OConS entities and mechanisms
need to be properly combined, so as to appropriately offer the required services. This implies the
specification of adequate interfaces and signalling procedures between the involved parties.

In this particular case, OConS offers an enhanced access selection service, which combines the
requirements and policies of the end-user (and his/her services) with the particular conditions of
the network, thus leading to a clear distinction between the nature of the information which is
used. Below we further discus below this process.

e On the user side, OConS mostly provides information concerning the type of service requested
by the user (together with its particular requirements) and her preferences or profiles. The
main goal is to keep the QoE, as well as ensuring the seamless continuity of the service
if needed. Various end-user policies or rules are to be considered, i.e., those establishing
the particular needs of the end-user according to some pre-established profiles (e.g., energy
saving, technology preference, pricing, security, etc.) and those giving the service/application
requirements (e.g., quality needed and minimum networking resources). Likewise, the above
parameters can be handled on different ways, either in isolation or combined, according to
a specific configuration (for instance, they might be weighted so as to modulate the decision
token within the end-node, being part of the overall and coordinated decision).

e On the other hand, the network is able to compile information about its current status as
well as considering end-users’ perspective (e.g. radio-link quality such as SNR/RSSI, network
delay, quality profile, cost, etc.) and to take coordinated decisions considering a trade-off
between QoS, QoE and network management goals (for instance, load balancing).

In this case, the access selection OConS service is conceived to deal with multi-homed/multi-
interface devices, being able to handle flow mobility between different interfaces, to invoke multi-
path functionality, to select and activate per-flow mobility anchors on network-side, and to set the
right policies within user-terminals.

As can be seen from the above description, this OConS service is strongly based on the infor-
mation provided by the various IEs; in this sense, the bootstrapping shall discover all the elements
able to provide such information, and the mechanism shall be configured so as to establish which

SAIL Public 33

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
Date: August 15, 2012 Security: Public l\\\
Status: Final Version: 1.1 SAIlL

of them needs to be considered within the decision processes.

Once this is done, the DE must be able to interact first with the IEs, to retrieve the required
pieces of information; furthermore, in order to cope with multiple provider/operator situations, the
corresponding decision models need to be extended; for instance, we could configure the OConS
mobility management service so that it is the end-user terminal that collects partial decisions coming
from several operators to integrate them with the locally constructed decisions. Afterwards, the
DE must be able to interact and with the corresponding EEs, so as to enforce the appropriate
decisions both within the end terminals and on the network side.

The basic bootstrapping process, as well as the access selection and handover mechanisms, are
currently under development. These specific functionalities of the OConS framework is generic
enough so as to be used for various use cases and thus can provide benefits when the mobile access
is considered in conjunction with either CloNe or NetInf. Accordingly, we can imagine that these
access selection and mobility functionalities interact more closely with the applications/services
provided within the datacentres and the datacentres/cloud “controllers” or by the NetInf architec-
ture, assuring service continuity when necessary, better data-path efficiency through offloading and
anchor selection, influencing the instantiation of applications/services within a given datacentre,
helping to establish the optimum nodes (and corresponding connectivity) to retrieve the requested
content and so on.

34 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
.\\\ Date: August 15, 2012 Security: Public
SAI L Status: Final Version: 1.1

4 Final Demonstrator Designh and Realization
Aspects (Phase 2)

The scope of this chapter is the demonstrator design and prototype realization aspects internally in
WP-C during the Phase 2 (i.e., till the end of the project). It covers the prototyping activities that
focus on the two use cases (OConS for CloNe, and OConS for NetInf), as well as activities related
to the validation of the OConS architectural framework through the implementation of some of
its functionalities, i.e., OConS orchestration bootstrapping, generic OConS protocol, and generic
Information Element IE.

It will discuss which OConS “features” and innovations are validated by the prototypes and
demonstrations, which functions are implemented in addition or by modifying what was described
in chapter 2, how the components are realized through specific platforms and software, and what
is needed as a run-time environment for the demonstrations (e.g., application used, measurement
and visualization tools, and so on).

4.1 OConS support for CloNe

4.1.1 Common OConS / CloNe Concepts

This demonstration aims at showing elastic networking in cooperation with cloud management
by monitoring and controlling flows with a distributed control plane (between the domains) and
OpenFlow as protocol and forwarding engine. The aim is a proof-of-concept demonstrator that
allows to experiment with load-depnedent resource allocation algorithms, test the protocol variants
between CloNe and OConS and evaluate the performance of different decision strategies in path
selection across the domains.

First we give a sketch of the common OConS/CloNe architecture. The Distributed Cloud Man-
ager (DCM) is part of the CloNe Distributed Infrastructure Layer and configures the cloud resources
in the large. The DCM selects the involved domains and delegates tasks to the local domain specific
services, like processing, storage and network services. Furthermore the CloNe DCM informs the
involved domains - using their CloNe Cloud Controllers (CCs) - about their connectivity in the
cloud and their common attach points, namely Customer Edges (CEs) and Provider Edges (PEs).
The DCM-CC communication with the domains uses a Distributed Cloud Management Proto-
col (DCMP), which is based on OCCI and OCNI. Open Cloud Computing Interface (OCCI) is
the a network protocol from Open Grid Forum for managing cloud computing infrastructure like
storage and compute resources but does currently not offer a means to perform network resource
management. This is where Open Cloud Networking Interface (OCNI) comes into play. Open
Cloud Networking Interface (OCNI) is an extension of OCCI defined by CloNe to add network re-
sources and their management to OCCI. The DCM configures resources for the datacentre domains
as well for the connecting network domain.

The CC plays the central role in a datacentre domain and is the equivalent of the OConS DCU.
In the OConS case, it consists (cf. chapter 2.1) of a database for permanent storage of network

SAIL Public 35

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
Date: August 15, 2012 Security: Public .\\\
Status: Final Version: 1.1 SAIlL

information and does the computation of the optimal resource placement and their connection.

Two domains of a cloud exchange their dynamic connectivity parameters using the Distributed
Cloud Protocol (DCP). The DCP comes in two flavours for two different layers. The DCP-LL
organizes the adjacent CE-PE data plane connectivity at the attachment points via only CE-PE
communication for the Link Level (as already defined by CloNe in [7]). The DCP-NL is intro-
duced for purposes of network aspects between the datacentre (CloNe) domains and the network-
ing (CloNe) domains. It dynamically builds the overall cloud topology and the routing/forwarding
tables on the Network Level. Furthermore the DCP-NL instantiates the application flows together
with the needed processing resources and thus instantiates the end-to-end flows through the cloud.
For setting up application flows according to network and processing load, it monitors performance
indicators for processing load and link load. Thus the DCP-NL protocol is responsible for the
dynamic resource allocation and monitoring over all involved domains via the involved CCs, espe-
cially in OConS domains. While in CloNe the focus is on DCP-LL to configure the connectivity, the
actual focus in OConS is on the DCP-Network Layer protocol and its mechanisms, where DCP-LL
only is needed for configuring the datacentre - network interface (CE-PE) at link level.

Distributed Cloud

Manager DCM
Cl-c-)l-\l-e” p Distributed Cloud
domain Management

Protocol DCMP

Infrastructure:
VMs, Storage &
Virtual Network

DCP
Data
Conter | ocons controller Dcu |
F\\ Distributed Cloud
o &> Protocol
agreement - i
X OConS DCP-LL (Link Level,
) CloNe)
domain DCP-NL (Network
Level, OConS)

Figure 4.1: OConS/CloNe Architecture

4.1.2 Roles and functionality split between OConS and CloNe

Next we depict the roles, and the functional split of OConS and CloNe within the foreseen prototype,
cf. section 2.1. Within the Mobile Cloud Datacentre, the video processing for the flash crowd
will be dynamically organized in a distributed cloud network between CloNe and OConS (cloud
application). Thereby CloNe manages the overall selection and reservation of involved Datacentre
(DC) and Network (NW) domains constituting the Flash Network Slice (FNS) DCMP part. Also
CloNe establishes the dynamic connectivity between DC and NW via CE-PE interface in its DCP-
LL role. OConS dynamically establishes the flows between the involved application nodes for
multiple instances of distributed video processing resources in its DCP-NL role. Also OConS

36 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
l\\\ Date: August 15, 2012 Security: Public
SAI L Status: Final Version: 1.1

monitors the network load - both link and processing - and redirects the application flows between
the application end points as needed (i.e., seamlessly) in the DCP-NL.

4.1.3 Functionality of DCP-NL between involved CCs

Within the OConS control interfaces we differentiate three flavours of DCP-NL. First on the CloNe-
OConS interface between DC-CC and Network-CC the request for compute resources must be
announced. This includes requirements about the kind and quantity of these compute resources
but also the specification of the link requirements between or towards these compute resource.

Secondly the OConS-OConS interface between Network-CCs (intra-domain) monitors the load
status of nodes and links resources, computes intra-domain paths and sets up and releases them.
Moreover the intra-domain Network-CC interface allows to request inter-domain information to
compute inter-domain paths and also facilitates to set up inter-domain paths and resource moni-
toring requests.

Thirdly the OConS-OConS interface between Network-CCs (inter-domain) is meant to perform
the inquiry of a domain membership for a node. Moreover this interface allows the retrieval of
of sub-path information within the neighbour domain including its with metrics. And the inter-
domain Network-CC interface performs the set up of a “foreign” domain path.

4.2 OConS support for NetiInf

As OConS service realizations in support of NetInf we consider the multi-path content delivery for
ICN and the mechanisms to improve NetInf connectivity by OConS DTN routing.

4.2.1 Multi-path Content Delivery for ICNs with OConS

The OConS functionality to select the best multi-path strategy is located in an extended NetInf
convergence layer. This convergence layer uses the OConS framework components to decide the
best paths to use. The OConS functionality includes the use of IEs that feed information to make
decisions by DEs which are then implemented by the EEs located in the different NetInf based
devices in the network. The orchestration of this new layer is as follows:

e NetInf based application requests for content (based on predicates)

e Part of this new convergence layer (together with existing NetInf functionality) performs the
resolution phase. The resolution phase may result in a number of locations where the content
is hosted.

e The OConS based convergence layer will be fed with the information from the IEs to make
decisions by DEs. The decision will be in the form of an identified multi-path strategy.

e The EEs will implement the selected strategy in the NetInf nodes that are deployed with the
OConS convergence layer to retrieve the content.

The NetInf implementation that operate on a client is configured to use the OConS enabled
convergence layer. This will result in requests for content being received at the OConS enabled
convergence layer. This convergence layer will then return the required content through the imple-
mentation of the selected multi-path strategy.

SAIL Public 37

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
Date: August 15, 2012 Security: Public l\\\
Status: Final Version: 1.1 SAIlL

4.2.2 Improve NetInf connectivity by OConS DTN routing

A simple idea to demonstrate how OConS can support NetInf in the flash crowd scenario described,
would consist on a DTN node (A) triggering a request to retrieve a video of the street performer,
previously recorded by another DTN node (B) which is not present in the crowd any more. We
can describe the situation in more detail, providing the necessary steps:

e Node A, which is requesting the video, has not an Internet access. It only has the possibility
to establish peer-to-peer direct connections with other nodes in the vicinity (i.e via Bluetooth,
Wi-Fi, etc);

e Node B, which recorded the requested video, has an Internet connection available, and its
owner posted the content on his/her profile of one or several social networks;

e Some nodes of the flash crowd (C and D) have already retrieved the video, either from a
friend’s profile on the social network, or from a direct connection to Node B, who also shared
it via Bluetooth;

e Node B went away from the spot of the street performance, and so it is not directly reachable
any more. Nodes C and D are still in the flash crowd.

If a DTN routing scheme is not provided, Node A would not be able to get the video recorded by
Node B, unless A specifically knows C or D and its owner asks its peers C or D to share it directly.
If we have DTN routing implemented in nodes A, C and/or D together with the BPQ extension
for DTN2, Node A could send a request for the video, and C or D would be able to automatically
serve the content acting as NetInf caches, in a seamless way.

For the purpose of serving NetInf with the extension of DTN interactions, the DTN routing
mechanism would need to rely on the BPQ extension for DTN2, so that nodes are able to act as
NetInf caches and to process BPQ requests and responses for the content shared. Additionally, to
spread a popular content related to the street performance, DTN caches could be prioritized when
deciding which is the best next hop for a certain route or destination.

If DTN routing was to be implemented alone, the contents shared by people on the flash event
could only be spread out on a peer-to-peer basis. That is, a DTN node would require to know
which node has the content and ask for it to that specific owner. Combining the DTN routing
with the NetInf caching on intermediate nodes, and using the BPQ request/response mechanism, a
seamless communication is feasible. There is no need to be aware of the content location to trigger
a request for it, since an intermediate node acting as a NetInf cache would automatically serve the
content without forwarding the request to the initial destination node (the latter being one of the
owners of the content, previously known by the requesting node).

4.3 OConS Framework Reusable Components

4.3.1 Orchestration Bootstrapping

Orchestration is one of the major OConS innovations since it supports the flexibility and openness of
the complete framework, by allowing the dynamic configuration and instantiation of mechanisms
and services based on the combination of different OConS components. In fact, for the sake of
flexibility, orchestration must be present at all communication levels, thus bringing about three
main orchestration levels, which are enumerated below:

e Link Connectivity Services: these orchestration services do not span further than one hop
and are closely related to the physical and data-link layers.

38 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
l\\\ Date: August 15, 2012 Security: Public
SA I L Status: Final Version: 1.1

o Network Connectivity Services: these services affect the routing and transport layers and are
therefore independent from the end user application or service. They usually involve two or
more nodes (i.e. end/access/core-nodes).

e Flow Connectivity Services: these are, as the previous ones, related to routing and transport
layers, but in this case they show a higher dependence with the ongoing applications and
services.

The orchestration functionalities are key enablers to allow the applications requesting certain
service (OConS mechanisms) from the OConS framework and proceed with the appropriate config-
uration of the OConS components so as to offer (to the “requesters”) the most appropriate service,
fulfilling their needs. This orchestration task is carried out by means of some functionalities as
follows:

e Service Orchestration Process (SOP) itself: it is in charge of coordinating and overseeing
all the orchestrations tasks, keeping track of the mechanisms which are available OConS and
what they can offer. These mechanisms are defined as a combination of OConS entities (i.e.
IEs and EEs) which a particular DE requires in order to make a decision.

e Orchestration Service Access Point (OSAP): this is the external interface of OConS with
its users (e.g. applications, CloNe, NetInf). The OSAP is the entry point for user requests
(coming with some connectivity requirements), and the OConS can inform back the users
about the available OConS capabilities or status.

e Orchestration Register (OR): this acts as a repository of all the OConS entities within the
different nodes, possible considering resources from other nodes. These OConS entities can
be further combined to instance various mechanisms (see [4]), which are also registered within
the register.

e Orchestration monitoring: this collects the status of the OConS components and mechanisms
launched within the different OConS-enabled nodes.

Some of the orchestration functionalities have been already implemented and tested !. The
current components have been developed in C++ and the communication between the various
entities is socket-based. In this sense, each entity is an object of the appropriate class, encompassing
the required functionalities; as an illustrative example, an illustrative generic class is presented
further in the document (see Section 4.3.3). In terms of the corresponding connectivity services,
the implementation is mostly focused on link connectivity, offering an enhanced Access Selection
to the OConS user within a heterogeneous radio access environment. The orchestration of the
various entities and components enable the use of an improved Access Selection service which can
be integrated within each of the use cases described in Sections 4.1 and 4.2.

As depicted on Fig. 4.2, where the various F’s represent a particular orchestration functionality,
the implementation is focused on the registering functionalities for the time being. It is worth
mentioning that we have assumed that the Access Selection service is also implicitly required by
the node when it turns on, but for simplicity this is not shown in Fig. 4.2.

As was previously discussed, the OConS Access Selection encompasses three entities whose func-
tionality has been depicted in Section 2.5. In a nutshell, this is defined by the DE in charge of
selecting an interface, the IE providing the current link quality of the available connections and
the EE able to enforce the connection to selected interface and access network; likewise, upon the
request from the DE, the EE is also responsible for the required mobility executions functions, if
necessary.

!The implementation described in this document is currently under development and therefore it might be adapted
to the overall OConS design and specification.

SAIL Public 39

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
Date: August 15, 2012 Security: Public M.
Status: Final Version: 1.1 SAIlL

Orchestration: Mohile Terminal

@ SOP @ OSAP

: Entities Registration and Mechanisms Bootstrapping lr

regRequest(EntitylD) L
Register
regRequest(Entity/D) _
Register
regRequest(EntitylD) _
Register

Validation of mechanisms Iﬁ
|

: Response to a Connectivity request

User Request

User Require filents
-4

Selection of
appropriate mechanisms

Senice Composition =

Mechanisms Configuration
and Invocation

fgRequest&lnvoke(/E_IDs, EE IDs, cfg parfams)

C
-1
-

| S

nger}]uest(frequency, thresholds)
T

C
-
-

I
infoMotification(if_1, if_2)

Decision Making:
func(if_1, if_2)

I
fgRequest(interface to select) X

C
-
-}

|
i
Interface if_1 selected h :
i
®=| [@*] (@

Figure 4.2: OConS Orchestration

40 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
l\\\ Date: August 15, 2012 Security: Public
SA I L Status: Final Version: 1.1

The first orchestration steps comprise the local discovery and OConS mechanism searching and
identification, according to the data/information model. As can be seen, this resembles a traditional
bootstrapping procedure. During this discovery process, all OConS entities register towards the
SOP by using the regRequest primitive together with their information. This comprises both the
entity type and the corresponding listening port, indicated on Fig. 4.2 as entitylD, which are
afterwards stored within the OR.

Anytime an entity is registered, the SOP checks whether there exists any DE which might be
interested in that information; hence, upon the registration of any entity with the orchestration
process, the SOP informs the DE about the way to reach the rest of entities (in the current
implementation, this refers to the listening port) so as to enable a whole OConS mechanism or a
combination of mechanisms, which could be invoked from now upon receiving the requests from
the OConS users, or following a change in the network state.

Once the DE is aware of the available entities which make the mechanism feasible, it starts the
normal Access Selection service procedures. In this case, the DE subscribes to the IE (by means of
a confReq primitive) by setting the monitoring frequency as well as a threshold (these are explained
in more detail on Section 4.3.3).

It is worth emphasizing that an OConS mechanism is not necessarily limited by a static number
of entities, but it can be instantiated with a minimum set of them and be eventually improved with
additional ones, including remotely.

Accordingly, once the basic connectivity has been reached (e.g., IP reachability), the current
implementation allows the SOP within a node to trigger a remote discovery process, so as to
become aware of the functionalities and entities which are available in remote nodes, as depicted
on Fig. 4.3. In this case, the information gathered for the Access Selection service indicates that
there exists an IE within each of the access elements to monitor the current load in the node; as a
result of this new information, the ‘terminal-based’ access selection mechanism is able to take into
account the network status.

Although the described mechanism considers that it is the mobile node which takes the ultimate
decisions, the orchestration implementation does not limit this procedure to any type of node, nor
a combination of them. In particular, for the aforementioned use case, the access selection decision
might be jointly taken by the access nodes and the terminal itself on a distributed approach,
providing more weight to one or the other so as to avoid conflicts. This could even consider the
case in which the overall responsibility lies within the network nodes.

4.3.2 Generic OConS Protocol Library

The OConS Protocol Library will be in charge of providing low-level functionalities to allow the use
of the OConS protocol and interfaces. It will first provide communication facilities, to make the
entities able to communicate with each other. This includes management of direct communication
with the local INC function, and helpers for message exchange. These are in charge of the encap-
sulation in the OConS headers and forwarding to the relevant entity or node through the INC. It
will also support a callback-based structure.

Message content manipulation is also the realm of the library. It will abstract the on-wire TLVs
structure from the entity code. This includes parsing helpers and accessors for the various data
contained in a message as well functions to create and to add of data into the messages. This data
can be of several basic types. Per-type setters and getters will also be provided by the library for
basic OConS data type manipulation.

Finally, it will provide high-lever OConS functionalities to support the orchestration functional-

SAIL Public 41

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3

Date: August 15, 2012 Security: Public l\\\
Status: Final Version: 1.1 SAIlL
Orchestration: Mohile Node Orchestration: Access Node
DE
discReq(Nodel D) _ ®SOPIOF{
discReq(Nodg/D) _ @ SOP/OR
SearchEntities

discResp(EE] IDs, IE_IDs)

RegisterEntities

._t_ﬂiscResp(J‘E_ID_J‘caaj

Decision Making:
func (#_1, if_2, arlLoad)

DE ® SOP/OR ® SII:JPIOR

Figure 4.3: OConS remote Orchestration

ities such as mechanism identification, entities registration and bootstrap management. Conceptu-
ally, an OConS entity implemented based on this library would match the following pseudo-code:

e Register callback functions (message handling, periodic tasks, ...) to the library;
e Create an entity-description structure;
e Open connection to INC (incl. registration and identification);
e Bootstrap.
With the message-receiving callback function being along the lines of the Algorithm 1.

Algorithm 1 Example pseudo code for message-handling callback with the OConS generic library.
Input: m, Message
if type of m is X {Message parsing} then
read first field as f
if type of f is Z {Basic type manipulation} then
store value of Z in local data structure
end if
else if type of m is Y then
create new message mo of type A
add Z into mg {Message building}
s < sender of m {Message parsing}
send mgy to s {Message encapsulation and Inter-Node communications}
end if
do some entity-specific processing based on Z

The next section shows an example generic IE built around the services provided by the OConS
protocol library.

42 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
l\\\ Date: August 15, 2012 Security: Public
SA I L Status: Final Version: 1.1

4.3.3 Generic Information Element

According to the OConS architecture, the Information Element (IE) takes care of relevant informa-
tion gathering, and later provides such information to the interested parties (in particular to the
DE) according to the format which is being defined by the corresponding data/information model.

We assume that the IEs are used by one or more DEs so as to obtain the required information
and are entities which have been orchestrated around a DE so as to define an OConS service
(mechanism). Furthermore, they have been designed (and implemented) as both reactive and
proactive entities, able to act either upon receiving a request from another entity or proactively
sending notifications as configured (for instance threshold crossing, expiration of timer, etc).

e [E design: from design and implementation point of views, the IE includes a reference to the
particular object responsible for providing the particular data (this inherits from a generic
Data Source module (DS) which has been implemented as a C++ template).

In fact, and due to the wide range of data that might be handled for the various OConS
services at different levels (link, routing, flow), the IE (as can be seen from the previous
discussion) has been decoupled into the OConS related procedures and the data acquisition
mechanism (which might belong to a wide range of elements, nodes, technologies, and so on).

In this sense, the outer class (so called Information Entity) implements the OConS interface
and ensures that the configuration requested by the corresponding DE (timers, thresholds,
etc.) is used, while the DS is responsible for getting the particular data from the original
source. Figure 4.4 shows a high-level description of the structure of these two modules and
their relationship.

DS |
|
Information Entity Lo
-m_getDataModule : *DA
-m_configuration : ieConf_t Data Source (DS)
-Open Communications() '
-Process Information Request() +FillinPacket()
-Process Configuration Request() | +RefreshData()
-Build Information Response() 1 1 [tSetParams()
-Build Information Notification()

Figure 4.4: Structure of the implementation of the IE

Last, but not least, the DS shall be aware of the OConS data/information model (at least
partially) to properly represent the information (which might likely be provided by hard-
ware/drivers/other specific elements) according to the OConS format. It shall offer the the
FilllnPacket() method to include such information in the corresponding packet at any par-
ticular moment.

e [E Configuration: Currently, the configuration procedure offers both request/response and
subscription mechanisms; for the latter two possible configurations have been considered, and
thus can be established within the Configuration Request from the “requester”, as seen below.

1. Threshold crossing: this event happens when the metric surpasses a configurable per-
centage of the previous one. It does not control if a certain level has been reached
but the variation of the corresponding measurements (link quality, load increase, etc.)

SAIL Public 43

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3

Date:

August 15, 2012 Security: Public l\\\

Status: Final Version: 1.1 SAIlL

thus preventing hysteresis patterns. The inclusion of additional monitoring mechanisms
might be straightforward? This threshold crossing event is checked by the DS whenever
the RefreshData() method is called, so the “data” shall be first accordingly configured
by means of the SetParams() method.

2. Notification timer: it defines an interval (in seconds) used to send periodic reports to
the corresponding “requester”, this interval is set during the configuration phase.

4.3.4 Realization Plan

The following steps (milestones) are planned by end of the project, in order to develop the common
prototyping support sketched above:

OConS face-to-face meeting, 08. May 2012: discussion and alignment on orchestration and
interfaces.

Provide open entities code structure able to support low level communications functions and
configuration so as to facilitate their following tailoring.

July 2012: full specification of orchestration mechanisms/procedures and their intrefacing in
deliverable D.C.2 “Architecture and Mechanisms for Connectivity Services”.

Sept. 2012: implement orchestration capabilities in the OConS open entities and additional
overall orchestration functionalities provided by the Generic OConS Protocol Library.

OConS face-to-face meeting during the SAIL General Project Meeting, Bristol, week of 17.
Sept. 2012: final alignment of the OConS-collaboration with NetInf and CloNe on use cases
and interfacing aspects for a prototype supported by the Generic OConS Protocol Library.

Final OConS demonstration of Generic OConS Protocol Library features at e.g. final SAIL
General Project Meeting, January 2013, preferably for project review purposes.

Jan. 2013: document OConS demonstration/prototyping of Generic Protocol Library real-
ization in deliverable D.C.5 ” Demonstrator for Connectivity Service” and the overall project-
wide architecture, interfaces etc. in D.A.3 ”"Final Harmonised SAIL Architecture”.

2This can be further discussed, but the use of relative measurements allows to limit the dependence on particular
characteristics of the corresponding technology.

44

Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
.\\\ Date: August 15, 2012 Security: Public
SAI L Status: Final Version: 1.1

5 Integration and Cooperation Plan

This chapter describes the plans for the further work in the project regarding the cooperation that
is envisaged for the project-wide demonstration with CloNe and NetInf.

We describe the proposed cross-WP use cases (i.e., the show case) planned for final demo, the
level of integration/cooperation (e.g., conceptual, common use case, service interaction, interface
interaction/interoperability, and so on) and the services and interfaces to be offered by the OConS
workpackage to CloNe and NetlInf.

5.1 OConS and CloNe: Elastic Video Networking

5.1.1 Use case description

The OConS - CloNe cross-WP use case that is planned for the final demo event will demonstrate
the concept and the level of integration and interface interaction to show the benefits and the
interoperability of the services and interfaces offered by the OConS workpackage to CloNe.

The foreseen video demo use case shows the steps necessary to run a video stream from a video
server over a datacentre cloud performing the video processing to a video client.

CloNe is currently focused on the instantiation of potential cloud processing resources provided
by VM containers in distributed datacentres and their interconnection using a network statically
configured by Python Open Cloud Networking Interface (pyOCNI) functionality. What the OConS
use case has in mind is a more dynamic instantiation of the network and an elastic modification of
the connectivity based on monitoring the actually used resources by the video service (cloud appli-
cation) and also the management functionality of the service soon after the network is instantiated.
This monitoring can have several levels, like high level monitoring or low level monitoring and is
not only used to show the current state of the network on a GUI but is also used for determining
the optimal path through the network. So it is foreseen that if either the processing delay in the
intermediate video processing datacentre, or the transport delay between different datacentres gets
too high, the connecting flows carrying the application stream will be adapted.

5.1.2 Interaction between CloNe and OConS

The prototype implementation of the OpenFlow network controller establishes on demand Open-
Flow paths in the network. These paths are defined by:

1. The entry points to the network, expressed as the interfaces for the network border routers
the path will span between;

2. The network protocol or protocols that will be transported by the OpenFlow path.

The possibility to define the protocols allows the proof of concept of a ’network-as-a-firewall’-
alike service. Requests for network paths are implemented with a pyOCNI server, which has been
developed in the scope of the WP-D and can be used as an IE that stores the information regarding
the paths established in the network. OConS needs the capacity and the utilization for links and

SAIL Public 45

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
Date: August 15, 2012 Security: Public l\\\
Status: Final Version: 1.1 SAIlL

nodes in the network. The values for different parameters will be stored at OConS side for statistics
purposes and monitoring. Also OConS needs to know the network topology. As OConS sends the
End Points (EPs) as IP addresses towards CloNe, there also has to be an interface to find out these
EPs from CloNe.

5.1.3 CloNe and OConS Views

The application view of this use case is containing the video client, the video processing - no matter
of location - and the video server. The CloNe view of this is just the video processing container
available in several potential datacentres, the video server in another datacentre and the virtual
connections between the datacentres via attachment points, as defined by OCNI. The OConS view
is as follows: one attachment point (the CE) in the video ’cloud’, two attachment points in the
video processing DC and one attachment point in the video client.

5.1.4 Realization Plan

The following steps (milestones) are planned by end of the project, in order to realize the proto-
typing activities sketched above:

e CloNe-OConS face-to-face meeting, 24.April 2012: Discussion and alignment of cooperation
approach, architecture and interface issues.

e May 2012: document interim state of CloNe-OConS cooperation plans in deliverable D.A.9.
”Description of overall prototyping use cases, scenarios and integration points”.

e OConS contribution to CloNe public demonstration at the ”Future Networks and Mobile
Summit”, Berlin, 4.-7. July 2012: concept of inter-CloNe-OConS architecture, interfaces and
data models (extended OCNI).

e CloNe-OConS face-to-face meeting and code sprint session during the SAIL General Project
Meeting, Bristol, week of 17. Sept. 2012: finalized descriptions of inter-CloNe-OConS ar-
chitecture, interfaces and data models (extended OCNI). Align use case realizations across
WPs.

e Final CloNe-OConS demonstration at e.g. final SAIL General Project Meeting, January 2013,
preferably for project review purposes.

e Jan. 2013: document CloNe-OConS demonstration/prototyping realization in deliverable
D.C.5 "Demonstrator for Connectivity Service” and the overall project-wide architecture,
interfaces etc. in D.A.3 ”Final Harmonised SAIL Architecture”.

5.2 OConS and NetInf: Multi-path Content Delivery for ICNs with
OConS

5.2.1 Description

The OConS multi-path strategy selection functionality is required to be integrated within a con-
vergence layer used by NetInf. A number of convergence layers are being conceived by WP-B to
be used with NetInf. This work intends to use one of these convergence layers to perform the
multi-path strategy adoption.

46 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
l\\\ Date: August 15, 2012 Security: Public
SAI L Status: Final Version: 1.1

The multi-path functionality is mainly contained in the convergence layer itself. The name
resolution phase in NetInf, also done through the convergence layer, results in obtaining a number
of locators. These locators are then used by the convergence layer to retrieve the content over the
multiple attachments that are under the control of the convergence layer.

WP-B is currently focused on defining and developing a UDP-based convergence layer. This
convergence layer is planned to be designed in a way where content are retrieved as segments
(chunks). Therefore, the multi-path functionality defined in WP-C aims to utilize this segmenting
capability of the UDP convergence layer to perform multi-path actions.

5.2.2 Realization Plan

The following steps (milestones) are planned by end of the project, in order to realize the proto-
typing activities sketched above:

e NetInf-OConS presentation and discussions, 18. April 2012: Presentation of 2 alternative
proposals on how OConS functionality will be integrated into NetInf.

e May 2012: document interim state of NetInf-OConS cooperation plans in deliverable D.A.9.
”Description of overall prototyping use cases, scenarios and integration points”.

e June/July 2012: presentation and discussion with WP-B on detailed mechanisms adopted
by OConS to manipulate the NetInf forwarding mechanisms and the convergence layer to
perform the multi-path content retrieval/delivery.

e NetInf-OConS face-to-face meeting during the SAIL General Project Meeting, Bristol, week
of 17. Sept. 2012: finalized descriptions of inter-NetInf-OConS architecture, interfaces and
data models. Align use case realizations across WPs.

e OConS with NetInf in a public demonstration at the "MONAMI Conference”, Hamburg,
September 2012:

e Final NetInf-OConS demonstration at e.g. final SAIL General Project Meeting, January
2013, preferably for project review purposes.

e Jan. 2013: document NetInf-OConS demonstration/prototyping realization in deliverable
D.C.5 ”Demonstrator for Connectivity Service” and the overall project-wide architecture,
interfaces etc. in D.A.3 ”Final Harmonised SAIL Architecture”.

5.3 OConS and NetInf: OConS routing for DTVideo

5.3.1 Description

The OConS implementation of a DTN routing mechanism is based on the social interactions among
nodes. It is intended for human carried devices (e.g. mobile phones interacting as DTN nodes),
so that the dynamics and mobility of those DTN nodes can be seen as people’s social behaviour
that the routing protocol uses. The final purpose of integrating this mechanism with the NetInf
implementation of BPQ is to show the cooperation between previous knowledge of social encounters
among nodes and the concept of intermediate caching of demanded content.

The combination of both prototypes requires the DTN routing mechanism to rely on the BPQ
extension for DTN2, so that nodes are able to act as NetInf caches and to process BPQ requests
and responses for the content shared.

The integration plan could be sketched into several phases, including the following:

SAIL Public 47

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
Date: August 15, 2012 Security: Public l\\\
Status: Final Version: 1.1 SAIlL

e Individual prototype implementation: NetInf has implemented a prototype with laptops show-
ing how the BPQ extension is used to retrieve video content from a DTN node which has not
access to the video server (using an intermediate cache). OConS is finishing the implementa-
tion of the DTN routing for Android phones (hybrid deployment of phones and laptops);

e Adaptation tasks for integration: DTN routing is implemented in Java code, whereas BPQ
extension is available in C++, so some adaptation will be needed to integrate both prototypes.
One possibility is to have a hybrid DTN scenario with laptops acting as NetInf nodes (content
caching is available) and android phones acting as OConS nodes (routing based on social
metrics): a NetInf node should act as the user who requests a certain video file (sending a
BPQ request); OConS intermediate nodes would forward this request using social metrics to
select the best route to destination; and another NetInf node would act as the cache that
processes the BPQ response and serves the demanded video;

e Full integration: the final goal would be to port the BPQ extension into Java code so that all
DTN nodes are running a complete (and fully integrated) implementation of both mechanisms.
A hybrid scenario could be deployed with phones and laptops, both acting as NetInf/ocons
nodes (i.e. all nodes are able to generate BPQ requests/responses and they use social metrics
to route/forward packets to neighbours).

If DTN routing was to be implemented alone, the contents shared by people on the flash event
could only be spread out on a source/destination basis. That is, a DTN node would require to
know which node has the content and specifically ask for it to that source (either the content
owner/generator or a node publishing its available content files). Combining the DTN routing
with the NetInf caching on intermediate nodes, and using the BPQ request/response mechanism, a
seamless communication is feasible. Furthermore, if BPQ extension is individually considered, the
social behaviour of DTN nodes would not be exploited as routing information, which could result
in a sub-optimal performance due to the demanding nature of a flash event. If some people present
in the flash crowd belong to some social network and are connected with other friends, they would
presumably have historical contact information about reciprocal encounters, and that is definitely
useful for routing decisions in the flash crowd scenario.

5.3.2 Realization Plan

The following steps (milestones) are planned by end of the project, in order to realize the proto-
typing activities sketched above:

e NetInf-OConS presentation and discussions, 23. April 2012: Discussion and alignment of
cooperation approach, prototype goals and interface issues.

e May 2012: document interim state of NetInf-OConS cooperation plans in deliverable D.A.9.
”Description of overall prototyping use cases, scenarios and integration points”.

e June-September 2012: work in the implementation of OConS DTN routing so as to serve the
DTVideo application, based on BPQ extension. Maintain discussions all along this period in
order to combine social based routing with an adapted NetInf client for DTN environments
(focus on flash crowd scenario).

e NetInf-OConS face-to-face meeting and code sprint session during the SAIL General Project
Meeting, Bristol, week of 17. Sept. 2012: finalized descriptions of inter-NetInf-OConS demon-
stration, interfaces and realization of the prototype. Align use case realizations across WPs.

e Final NetInf-OConS demonstration at e.g. final SAIL General Project Meeting, January
2013, preferably for project review purposes.

48 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
l\\\ Date: August 15, 2012 Security: Public
SA I L Status: Final Version: 1.1

e Jan. 2013: document NetInf-OConS demonstration/prototyping realization in deliverable
D.C.5 ”Demonstrator for Connectivity Service” and the overall project-wide architecture,
interfaces etc. in D.A.3 ”Final Harmonised SAIL Architecture”.

SAIL Public 49

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
Date: August 15, 2012 Security: Public l\\\
Status: Final Version: 1.1 SAIlL

6 Conclusion

We have started by presenting the prototyping and experimentation clusters based on partners’
activities, the use cases from first phase of the project as introduced in D.A.1 (i.e., the bottom-up
approach), and then focusing mainly on the two updated use cases OConS for CloNe and OConS
for NetInf, as described in D.C.1-Addendum.

Accordingly, we have described in detail the prototyping activities as implemented in the first
phase based on the partners’ contribution. We have thus explain the component architecture for
each prototype and given its realization details, i.e., sub-components, modules, platform, program-
ming language and protocols used or adapted.

We have then continued by decomposition and analysis the two main OConS use cases from
D.C.1-Addendum, identifying the functionalities and the prototyping components to be employed
in order to support and bring into reality these use cases. Based on this analysis, we have come up
with a cooperation plan for the next phase of the project, and have presented the functions that
are to be implemented in addition or by modifying what was done by the WP-C partners in the
first phase.

Finally, we have also planned the future work needed for demonstrating project-wide scenarios,
thus continuing and increasing the cross-WPs cooperation from Cloud Networking and, respectively,
NetInf perspectives.

Among the lessons learnt, we have seen that it is important to have quite early in the project
not only the clusters with inter-related prototyping topics coming from the partners, but also to
focus on a couple of driving use cases which are commonly agreed among several partners.

Another lesson learnt is the fact that if a certain level of prototyping integration is sought,
then we need to boil down to common interfaces and information model in the initial stage of the
prototyping task.

When it comes to the next steps, we will have in a few months the refinement and the finalisation
of the OConS architecture in D.C.2 deliverable, so we further expect that this will influence the
prototyping activities by bringing in further coherence and clarification, notably for the re-usable
components such as the autonomous OConS orchestration process and intra-/inter- domain OConS
interfaces.

Likewise, the results from the experimentation and prototyping activities will be collected and
presented in the D.C.5 (due at the end of the project) demonstrating concrete applications for
Connectivity Services. Moreover, our work on prototyping will contribute to the project-wide
deliverable D.A.9 where we intend to focus more on how prototyping pieces and components from
NetInf, OConS, and CloNe fit together in a common project-wide story.

Before that, we have also planned intermediate demonstrations to show our prototypes related
to the two main use cases, i.e., OConS for CloNe at the FuNeMS event in July 2012, as well as
OConS for NetInf at the MONAMI conference in Sept. 2012.

50 Public SAIL

[\ N

SAIL

Document:
Date:
Status:

FP7-ICT-2009-5-257448-SAIL/D-4.3

August 15, 2012
Final

Security:
Version:

Public
1.1

List of Acronyms

AR Access Router

AJAX Asynchronous JavaScript and XML
ASF Advertising Supporting Function
BPQ Bundle Protocol Query

CCN Content-Centric Networking

CC Cloud Controller

CE Customer Edge

CloNe Cloud Networking

DCC Domain Control Client

DCC-B Domain Control Client - Border Forwarding Node
DCC-I Domain Control Client - Interior Forwarding Node

DCM Distributed Cloud Manager

DCMP Distributed Cloud Management Protocol
DCP Distributed Cloud Protocol

DCUP Domain Control Protocol

DCU Domain Control Unit

DC Datacentre

DE Decision Making Entity

DFC Dynamic Flow Control

DTN Delay Tolerant Network

EE Execution and Enforcement Entity

EP End Point

FNS Flash Network Slice

GUI Graphical User Interface

laaS Infrastructure as a Service

IDE Integrated Development Environment
ICN Information-Centric Networks

IE Information Management Entity

INC Inter-Node Communication

JSON JavaScript Object Notation

MN Mobile Node

SAIL Public

51

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
Date: August 15, 2012 Security: Public
Status: Final Version: 1.1

[\ N

SAIL

NetInf Network of Information

NE Network Element

NW Network

OCCI Open Cloud Computing Interface
OCNI Open Cloud Networking Interface
OConS Open Connectivity Service

OE Orchestration Entity

OR Orchestration Register

OSAP Orchestration Service Access Point
OSGI Open Service Gateway Initiative
PCE Path Computation Entity

PE Provider Edge

PRoPHET Probabilistic Routing Protocol based on Historical EncounTers

pyOCNI Python Open Cloud Networking Interface

QoE Quality of Experience

QoS Quality of Service

RAN Radio Access Network

REST Representational State Transfer
RPE Request Processing Entity

RRH Remote Radio Head

SAIL Scalable Adaptive Internet Solutions
SOP Service Orchestration Process
TED Traffic Engineering Database
TLV Type Length Value

VM Virtual Machine

WP workpackage

52

Public

SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3

l\\\ Date: August 15, 2012 Security: Public
SAI L Status: Final Version: 1.1
List of Figures
1.1 Flash Crowd scenario, illustrated with selected OConS services for two use cases . . 4
1.2 Mobile Access and Datacentre Interconnection Use Case 6
1.3 Mobile and Multi-P for Information Centric Networks use case 7
2.1 Domain control architecture - components and interfaces 9
2.2 Domain control architecture - internal DCU components 10
2.3 Current Infrastructure As A Service solution - Datacentre technical solution 13
2.4 Proposed Infrastructure As A Service solution - Datacentre technical solution 14
2.5 Integration of OConS elements in the OpenFlow Data Centre infrastructure 14
2.6 Protocol Stack (Generic Architecture) Lo Lo L. 16
2.7 Realization of Extensions o 17
2.8 Generic architecture for components in a DTN scenario 19
2.9 Flow Chart of the mechanism implemented in a DTN node 20
2.10 Detail of the assignment of direct probabilities 21
2.11 Component architecture L 23
2.12 General registration processo 24
2.13 Dynamic Distributed Mobility Demoo 26
4.1 OConS/CloNe Architecture 36
4.2 OConS Orchestration e 40
4.3 OConS remote Orchestration 42
4.4 Structure of the implementation of the IE 43
SAIL Public 53

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
Date: August 15, 2012 Security: Public l\\\
Status: Final Version: 1.1 SAIlL

Bibliography

1]
2]

[3]

[14]
[15]

[16]

SAIL. The SAIL project web site. http://www.sail-project.eu/.

SAIL. Architectural Concepts of Connectivity Services - Addendum. Deliverable FP7-ICT-
2009-5-257448-SAIL/D.C.1 Addendum, SAIL project, January 2012. Available online from
http://www.sail-project.eu.

SAIL. Description of Project-wide Scenarios and Use Cases. Deliverable FP7-ICT-2009-5-
257448-SAIL/D.A.1, SAIL project, February 2011. Available online from http://www.sail-
project.eu.

SAIL. Architectural Concepts of Connectivity Services. Deliverable FP7-ICT-2009-5-257448-
SAIL/D.C.1, SAIL project, July 2011. Available online from http://www.sail-project.eu.

SAIL. The Network of Information, Architecture and Applications. Deliverable FP7-ICT-
2009-5-257448-SAIL/D.B.1, SAIL project, July 2011. Available online from http://www.sail-
project.eu.

SAIL. Content Delivery and Operations. Deliverable FP7-ICT-2009-5-257448-SAIL/D.B.2,
SAIL project, May 2012. Available online from http://www.sail-project.eu.

SAIL. Cloud Networking Architecture Description. Deliverable FP7-ICT-2009-5-257448-
SAIL/D.D.1 Rev. 2.0, SAIL project, January 2012. Available online from http://www.sail-
project.eu.

Fariborz Derakhshan, Heidrun Grob-Lipski, Horst Roessler, Peter Schefczik, and Michael Soell-
ner. On converged multidomain management of connectivity in heterogeneous networks. Future

Network and Mobile Summit (FuNeMS2012), Berlin., July 2012.

Jeff McAffer and Jean-Michel Lemieux. Eclipse rich client platform: Designing, coding, and
packaging java applications, 2005.

Beacon OpenFlow controller. http://www.openflowhub.org/display/Beacon/. Last seen
on Wed, 09 May 2012.

Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop : Rapid prototyping
for software-defined networks. FElectrical Engineering, pages 1-6, 2010.

Jon Watson. Virtualbox: bits and bytes masquerading as machines. Linuz J., 2008(166),
February 2008.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-
bauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In SOSP ’03:
Proceedings of the nineteenth ACM symposium on Operating systems principles, pages 164—
177, New York, NY, USA, 2003. ACM Press.

E. Davies A. Lindgren, A. Doria and S. Grasic. Probabilistic routing protocol for intermittently
connected networks. Active Internet-Draft, May 2012.

I. Urteaga F. Liberal J. M. Cabero, V. Molina and J. L. Martin. Acquisition of human traces
with bluetooth technology: Challenges and proposals. Ad Hoc Networks, Accepted. To appear.

J. M. Cabero I. Urteaga S. Perez-Sanchez, N. Errondosoro and I. Olabarrieta. Human routines

54

Public SAIL

http://www.sail-project.eu/
http://www.openflowhub.org/display/Beacon/

Document: FP7-ICT-2009-5-257448-SAIL/D-4.3
l\\\ Date: August 15, 2012 Security: Public
SA I L Status: Final Version: 1.1

optimise routing in disrupted networks: the hurry protocol. ACM MobiCom Workshop on
Challenged Networks CHANTS 2012, Submitted.

[17] Communication System Design. Android application version 3 of the project bytewalla, 2010.

[18] D. Kutcher S. Farrell, A. Lynch and A. Lindgren. Bundle protocol query extension block.
Active Internet-Draft, May 2012.

SAIL Public 55

	Introduction
	Phase 1: OConS Initial Prototyping and Demonstration Activities until Lisbon Workshop
	Phase 2: Towards the Project-wide Flash Crowd Scenario
	OConS for CloNe: Mobile Access and Datacentre Interconnection Use Case
	OConS for NetInf: Mobile and Multi-P for Information Centric Networks Use Case

	Description of Prototype Building Blocks
	Building Block: OConS Flow-Based Domain Connectivity Control
	Building Block: Interconnecting Datacentres using OpenFlow
	Building Block: Multi-path Content Delivery for Information Centric Networks with OConS
	Building Block: DTN routing based on adaptive learning from historical encounters with OConS
	Building Block: Distributed Access Selection and Mobility Decision with OConS
	Building Block: Dynamic Distributed Mobility Execution with OConS

	Analysis of OConS Scenarios
	OConS for CloNe: Mobile Access and Datacentre Interconnection Use Case
	OConS for NetInf: Multi-P and DTN for Information Centric Networks Use-Case
	Common OConS support for CloNe and NetInf

	Final Demonstrator Design and Realization Aspects (Phase 2)
	OConS support for CloNe
	OConS support for NetInf
	OConS Framework Reusable Components

	Integration and Cooperation Plan
	OConS and CloNe: Elastic Video Networking
	OConS and NetInf: Multi-path Content Delivery for ICNs with OConS
	OConS and NetInf: OConS routing for DTVideo

	Conclusion
	List of Acronyms
	List of Figures
	Bibliography

