SEVENTH FRAMEWORK
PROGRAMME

Objective FP7-ICT-2009-5-257448/D-2.2
Future Networks
Project 257448

“SAIL — Scalable and Adaptable Internet Solutions”

D-2.2
(D-A.2) Draft Architectural Guidelines and
Principles
Date of preparation: 11-07-31 Revision: 1.0
Start date of Project: 10-08-01 Duration: 13-01-31

Project Coordinator: Thomas Edwall
Ericsson AB

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2
Date: July 29, 2011 Security: Public
Status: Final Version Version: 1.0

Document Properties

Document Number:

D-2.2

Document Title:

(D-A.2) Draft Architecture Guidelines and Principles

Document Responsible:

Benoit Tremblay (EAB)

Document Editor:

Benoit Tremblay (EAB), Peter Schoo (Fraunhofer)

Authors:

Pedro Aranda (TID)

Jorge Carapinha (PTIN)
Dominique Dudkowski (NEC)
Peter Schoo (Fraunhofer)
Michael Soellner (ALUD)
Benoit Tremblay (EAB)

Target Dissemination Level: PU
Status of the Document: Final Version
Version: 1.0

Production Properties:

Reviewers:

Holger Karl (UPB)
Michael Soellner (ALUD)
Luis M. Correia (IST)

Document History:

Revision Date Issued by Description
1.0 2011-07-29 Peter Schoo Final Version
Disclaimer:

agreement n° 257448.

This document has been produced in the context of the SAIL Project.
recetved funding from the European Community’s Seventh Framework Programme (FP7/2010-2013) under grant

All information in this document is provided “as is” and no guarantee or warranty is given that the information
is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.
For the avoidance of all doubts, the Furopean Commission has no liability in respect of this document, which is
merely representing the authors view.

SAIL

Public

The research leading to these results has

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2
Date: July 29, 2011 Security: Public ‘\
Status: 1.0 \\

Final Version Version:

Abstract:
This document presents principles and guidelines applicable to the architecture work being done
in SAIL. Apart from generic principles and guidelines, objectives of the Themes are presented
as well as the approach taken to reach those objectives.
The document includes a simplified view of the SAIL overall architecture, identifying the main
interfaces between the work packages and preliminary results from the Theme work. This archi-
tecture will be refined as the architecture of each work package will evolved.
Finally, an evaluation of the work done so far and identification of open issues are presented in
the concluding chapter.

Keywords:

Architecture, Future Internet, SAIL, Information-Centric, Networking, Cloud Computing

ii Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

‘\\ Date: July 29, 2011 Security: Public
\ N Status: Final Version Version: 1.0

Executive Summary

This document is a public deliverable of the Scalable Adaptive Internet Solution EU-FP7
project |1] and describes the architectural principles and guidelines to be followed during the project.

SAIL work is divided in four work package . Out of these four, three are carrying out
architectural work: Network of Information (NetInf, WP-B), Open Connectivity Services (OConS,
WP-C) and Cloud Networking (CloNe, WP-D). These three work packages target different aspects
of the Future Internet and have different perspectives on the functions to be implemented. To help
interested readers, both external and internal to the project, to have a global understanding, this
document establishes the base to harmonise the architecture work in the project.

First, a set of common terms that are used throughout the project is established.

A set of generic principles and guidelines is put in place to orient the design along with some ar-
chitectural guidelines and objectives for each of the Themes defined for the project (Inter-Provider,
Network Management, Prototyping & Experimentation and Security). Since SAIL is targeting
deployment in a three to five years time frame, migration considerations have also been added.

A list of recommended topics to be covered by the WP| architectural documents is enumerated.

A simplified overview of the SAIL global architecture is presented where the main interfaces
between the different systems studied in SAIL are identified. Some early results from the Theme
work are also presented.

Finally, an evaluation of the work done so far and identification of open issues are presented in
the concluding chapter.

SAIL Public iii

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

‘\\\ Date: Jl.lly 29, 2(?11 Secu'rity: Public
SALL Status: Final Version Version: 1.0
Contents
[Cist of Figures| vi
[Cist of Acronyms| viii
(1__Introduction 1
1.1 Motivation and objectives| 1
L2 Structurd e 1
3
[3__Guidelines| 7
[3.1 General principles and guidelines| 7
3.2 Security Framework and Guidelines|. o oo 10
[3.2.1 Objectives|. e 10
[3.2.2 Approach| 10
323 Gudelines e 10
[3.3 Network Management Framework and Guidelines| 11
[3.3.1 Objectives|. e 11
3.3.2 Interrelations 12
B33 Guidelines 13
[3.4 Inter-provider Framework and Guidelines| 15
[3.4.1 Objectives|. e e e 15
B.42 Gudelines. 15
[3.5 Prototyping and Experimentation Framework and Guidelines| 16
[3.5.1 Approach| L 16
[3.5.2 Objectives|. e e 17
[3.5.3 Principles| 17
[3.50.4 Architectural Framework for Validationl 18
3.5.5 Guidelines on Validation Process and Frameworkl 18
[3.5.6 Guidelines on Free and Open Source Software| 20
[3.6 Migration and Interoperability Framework and Guidelines| 24
[3.6.1 Technical challenges|o 24
[3.6.2 Business incentives and obstacleso 24
3.6.3 Guidelines 25
|4 Topics to be addressed| 27
5__SAIL Architecturel 29
[.1 Simplified Architecture]. o 29
Bl OVErVIEW] o o o e e e e e e e e e e e e e e e e e 29
b.1.2 Interfacesl L 30
(.2 Theme Interactionsl 32
[0.2.1 Security] e e e 32
SAIL Public v

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

Date: July 29, 2011 Security: Public ‘\\
Status: Final Version Version: 1.0 S A I\L
0.2.2 Inter-provider|. L 34
0.2.3 Management| L. L 35
0.2.4 Migration| e 41
6 Conclusionl 43
Bib orap 45
vi Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

Date: July 29, 2011 Security: Public

Status: Final Version Version: 1.0

List

of Figures

[2.1 'The role of Security Services in design, modelling and implementation for the engi- |
| neering of security solutions as encompassed in RFC4949.| 6
|3.1 Interrelations on the project, work package, task, and theme level.| 12
[3.2 Interaction between management functions via WP-D’s two types of interfaces.| . . . 14
13.3 Prototyping, Test and Experimentation Framework|. 19
5.1 Simplified SAIL Architecture] o 29
[5.2 Potential interactions between Cloud Networking (CloNe) and Open Connectivity |
| Services (OConS)| 31
[5.3 Interprovider intertaces in the |OConS|data centre interconnection use case|. 35
[>.4 Management in the NetInf architecture, based on Figure 3.2 and 3.3 in 2| 36
[5.5 Management in the OConS architecture, based on Figure 4.2 in [3]. Not all OConS
| interactions are shown, for colour codes see Figure 4.2 in [3|. For symbols, refer to
| Figurep.Al]. o o 37
[>.6 Management in the CloNe architecture, based on Figure 2.4 and 4.4 in [4]. The |
| figure shows only an exemplary setup in the peer-to-peer interaction case, among |
| many other possibilities| o 39
5.7 Inter-WP management interactions. — a. Management across layers, based on |
Figure 3.5 in [2] and Figure 4.2 in |3] (NR: NetInf router; OF: orchestration function
(OConS)). — b. Types of manageable resources and domains as resource contexts
and interactions with the knowledge plane, based on Figure 5.1 and 5.3 in [4f| 40
SAIL Public vii

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2
‘\\ Date: July 29, 2011 Security: Public
\ N Status: Final Version Version: 1.0

List of Acronyms

APl Application Programing Interface
AS Autonomous System

CIA Confidentiality, Integrity and Availability
CloNe Cloud Networking

DFZ Default Free Zone

DE Decision Making Entity

DFM Distributed Fault Management
DGT Distributed Goal Translation
DRM Distributed Resource Management
DTN Delay Tolerant Network

EE Execution and Enforcement Entity
FNS Flash Network Slice

FOSS Free and Open Source Software
FSF Free Software Foundation

GPL GNU General Public License

IE Information Management Entity

INM In-Network Management

10 Information Object

IP Integrated Project

IPR Intellectual Property Rights

MC Management Capability

MDHT Multiple Distributed Hash Table
MVNQO Mobile Virtual Network Operator
NC NetlInf Cache

NR NetInf Router

NRS Name Resolution System

SAIL Public

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2
Date: July 29, 2011 Security: Public
Status: Final Version Version: 1.0

NTS NetlInf Transport Service

OConS Open Connectivity Services

OF Orchestration Function

OSI Open Source Initiative

PKI Public Key Infrastructure

PMT Project Management Team

REST Representational State Transfer
SAIL Scalable Adaptive Internet Solution
SAP Service Access Point

SE Self-Managing Entity

TOGAF The Open Group Architecture Framework
UNI User-Network Interface

VPN Virtual Private Network

WP work package

X Public

SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

‘\\ Date: July 29, 2011 Security: Public
\ N Status: Final Version Version: 1.0

1 Introduction

1.1 Motivation and objectives

A lot of architectural work is ongoing in the Scalable Adaptive Internet Solution project.
Each work package has two deliverables related to architecture. At first, an initial architec-
ture is presented by each WP at the end of the first year of the project. Based on these preliminary
architectures, experimentation will be done. Improvement to issues observed during the experi-
mentation phase will be integrated by a second round of architecture documents, occurring closer
to the end of the project. Finally, at the end of the project, a harmonised architecture integrating
the views from the work packages and the Themes will be published.

Each tackles a different set of functions and applications and thus has different perspectives
on the network. Despite the fact that the architectural elements to be described are not the same,
there are some principles that are applicable to all of them. Also, in SAIL, we have defined four
cross-cutting themes to ensure cohesion between the work packages in key areas. These four Themes
are Security, Network Management, Inter-Provider, and Experimentation & Prototyping. Each of
those Themes have established guidelines to be addressed by the work packages. Since is
targeting a deployment in 3 to 5 years, migration guidelines are presented in addition to the four
Themes.

The objectives of the current document are to establish a common understanding of the architec-
tural work, to introduce a common terminology, to present architecture principles, and to provide
guidelines on how aspects common to all work packages should be addressed. The document also
alms at setting the base of the integrated overall SAIL architecture.

As the guidelines are established in parallel with the ongoing architecture work in each work
package, the initial architecture documents might not be totally in line with the guidelines expressed
in the current document. However, we expect that those guidelines will be followed for the final
releases of the architecture descriptions.

1.2 Structure

Apart from the current introduction, the core of the document is divided in five chapters. The
next chapter introduces some terminology used in In Chapter (3] we introduce some generic
business and technological principles. We also provide guidelines and framework for each of the
Themes covered by SAIL and also for migration. In Chapter [we enumerate a list of topics
that should be covered by the architecture documents. We introduce a preliminary and simplified
version of the overall architecture and identify the major interfaces in Chapter [5| along with some
preliminary results from the Themes. Finally, in Chapter [6] we summarise the work done, present
a first evaluation of the architectural work and identify open issues.

SAIL Public 1

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

‘\\\ Date: July 29, 2011 Security: Public

L Status: Final Version Version: 1.0

2 Glossary

This chapter introduces a list of common terms that are used throughout the many deliverables of
the SAIL project. This list does not pretend to be exhaustive.

Access Provider The party that provides, authorises, and manages the immediate physical
access of the end user. It could be a fixed access provider (e.g. DSL), a mobile/wireless access
provider (e.g. 3G, WLAN), or an enterprise for its corporate network.

Application Programing Interface An Application Programing Interface is the de-
scription of the functions, data structure and rules or usage patterns to be used by a pro-
grammer on either side of an interface. An can be mapped to one or more programming
languages (language binding). The pragmatic aspects of an API relate to the underlying
model of the supported interactions that an API enables (usage patterns, call sequences) and
the underlying model of interface binding (e.g. Representational State Transfer, RESTful).

Connectivity Resources Physical or virtual nodes and links used to established connectivity
between end-points. Those end-points can be hosts, data centres, or network interconnects.

Demonstration A demonstration is a scientific/technical experiment carried out for the
purposes of proving scientific/technical effects or solutions, rather than for hypothesis testing
or knowledge gathering (although it may originally have been carried out for these purposes).

End User The end user is the source or destination party that initiates (connects) or re-
ceives/terminates requests towards the network (i.e. other stakeholders) — it could be a human,
a machine, an abstract higher-layer application, or an information object (content).

Experimentation Experimentation is the step in the scientific method that arbitrates between
competing models or hypotheses. Experimentation is also used to test existing theories or
new hypotheses in order to support them or disprove them. Moreover, an experiment may
also test a question or test previous results.

Flash network slice A network resource that can be provisioned and dimensioned on a time
scale comparable to existing compute and storage resources. Flash network slices can be used
to construct and connect virtual infrastructures spanning providers.

Free and Open Source Software (FOSS) Also free/libre/open-source software (FLOSS) —
Liberally licensed software to grant the right of users to use, study, change, and improve its
design through the availability of its source code.

Guideline A statement or other indication of policy or procedure by which to determine a
course of action. [5] Following a guideline is not usually considered to be mandatory.

Innovation Innovation generally refers to the creation or (substantial) improvement of prod-
ucts, technologies, or ideas. The goal of innovation is positive change, to make someone or
something significantly better, e.g. increase value, customer value, or producer value. The
literature on innovation typically distinguishes between invention, an idea made manifest,
and innovation, ideas applied successfully in practice.

SAIL

Public 3

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2
Date: July 29, 2011 Security: Public ‘\
Status: 1.0 \\

Final Version Version:

e Interface An interface is the point of interaction between two systems. Its description usually
includes the information exchanged, the rules on how that information can be exchanged and
the expected behaviour of each system after receiving the information. The interface may be
an programmatic interface, like an that can hide implementation details; it may be an
interworking interface, like a protocol that allows communication by exchange of messages
between two or more systems.

e Network/infrastructure/resource provider The party that owns and manages the network
infrastructure resources or parts of it. Multiple network/infrastructure providers may be
connected horizontally (on a peer-to-peer model) or vertically (forming a hierarchy of service
providers).

e Network Domain The concept network domain can be very different depending on the
aspects that need to be highlighted. In the case of [SAIL] three aspects are investigated: the
implications of administrative, operational, and trust domains and their borders. The
Inter-provider Theme concentrates mainly on administrative and operational domains. Trust
domains are in the scope of the Security Theme.

— Administrative Domain An Administrative Domain is a collection of network re-
sources that are under the control of a single administrator. This definition is shared by
all work packages. [WP}D refers to it simply as Network Domain.

— Operational Domain Operational Domains are collections of nodes that share the
same operational procedures. Examples of operational domains are:

1. An administrative domain that can be partitioned into its legacy Internet oper-
ation and an ICN network would have two operational domains.

2. a Name Resolution Region’s hierarchy that can be addressed through a Multiple
Distributed Hash Table (MDHT]) Name Resolution System (NRS)

3. regions where, due to lack of connectivity, a common [NRS| cannot be used, like
e.g. Delay Tolerant Networks (DTNE), would represent different Operational Do-
mains.

— Trust Domain A trust domain consists of a group of people, information resources,
data systems and/or networks that share a set of rules governing access to data and
services. This set of rules is known as a security policy.

e Principle Out of the many definitions for Principle, we embrace the following definitions.

A principle can be a fundamental law or a law of nature that can be observed as a natural
phenomenon or the behaviour of a system. On the other hand, a principle is also a moral
law set to orientate the conduct. It establishes an obligation to follow that law. [61[7] In both
cases a principle is understood as rule without exception.

Principles are general rules intended to be enduring and seldom amended, that inform and
support the way in which an organisation (here: the SAIL project) sets its vision and values
about fulfilling its mission. Architecture principles are fundamental to making decisions
related to the design and construction of the architected system [§].

e Proof-of-Concept (PoC) Proof-of-Concept is a realisation of a certain method or idea(s) to
demonstrate its feasibility, or a demonstration in principle, whose purpose is to verify that
some concept or theory is probably capable of being useful. A proof-of-concept may or may
not be complete, and is usually small and incomplete.

e Protocol A protocol is the formal description of the messages and rules for exchanging
those messages between two systems. Such a communication protocol defines the syntax and

Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

‘\\\ Date: July 29, 2011 Security: Public

L Status: Final Version Version: 1.0

semantics and encompasses the pragmatic aspects of the underlying model of the supported
interactions (cf. RESTful).

Prototype A Prototype is a first version of a product or system component meant for
demonstration, experimentation and testing purposes only. A prototype typically simulates
only a few aspects of the features of the eventual system. Basic prototype categories are
proof-of-concept prototype, functional prototype, or visual prototype.

REST| Representational State Transfer (REST) is a style of software architecture for dis-
tributed systems. [9

A Service Access Point (SAP)) is the point of interaction provided by a lower layer to the
next layer above in a multi-layer protocol stack (or to other layers if cross-layer interactions
are allowed by the architecture). [SAPp formalise the notion of an interface.

Scenario Scenario is a wider application area where a particular technology can be useful.
A scenario includes multiple use cases.

Security objectives Such objectives describe a protection target according to some security
policy (see Figure . Security services like authentication, confidentiality, or integrity
service are used to implement security policies. As such, the security objectives determine
which security services need to be used.

Security management Management process to maintain the intended protection level after
a system was released. Often security does not last forever, because of e.g. mathematical
advances that improve cryptographic analysis and thus endanger properties of a security
service implementation or because of newly identified vulnerabilities in the implementation.
Usual security management involves patch management as an instrument.

Security services Characterise the provided security properties. For example, a complete set
could be authentication, authorisation, confidentiality, integrity, or non-repudiation. There
are also other classical models like Confidentiality, Integrity and Availability (CIA). The ex-
plicit enumeration of security services determines the exact and implementation-independent
security properties.

System Architecture, Framework The structure of system components, their relationships,
and the principles and guidelines governing their design and evolution over time [10,[11]. A
framework provides partial solutions or even half-products, like for example dedicated code
libraries, to build a system according to an architecture.

User-Network Interface (UNI) A User-Network Interface (UNI) is a specific type of inter-
face between a client and a transport network to allow the client to establish and control
connectivity. Example of can be found in [12].

Use Case A use case describes how a particular technology can be used to solve a problem
or satisfy a need of a user.

Validation Validation confirms that the needs of an external customer, stakeholder, or user
of a product, service, or system are met. In software engineering, validation is the process of
evaluating software during or at the end of the development process to determine whether it
satisfies specified requirements.

SAIL

Public 5

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

Date: July 29, 2011 Security: Public ‘\\
Status: Final Version Version: 1.0 \

What Security Services should be provided?

Set of definite goals (= security objectives), courses, or methods of action to
: . guide and determine present and future decisions concerning security in a
Secu I’Ity Policies system that specify or regulate how a system or organisation provides security
services to protect sensitive and critical system resources.

¥ Schematic description of a set of entities and relationships by which a specified
Secu my Model set of security services are provided by or within a system.

Plan and set of principles that describe
* the security services that a system is required to provide to meet the needs

H H of its users
Secu I’Ity Architecture * the system elements required to implement the security services, and

* the performance levels required in the elements to deal with the threat
environment

¥ R Method or process (or device incorporating such a process) that can be used in
Secu I’Ity Mechanism a system to implement a security service that is provided by or within the system

How are Security Services implemented?

Figure 2.1: The role of Security Services in design, modelling and implementation for the engineer-
ing of security solutions as encompassed in RFC4949.

e Virtual network (or cloud) provider A virtual network provider may combine the service
and resource offerings of several network/infrastructure providers (both horizontally and ver-
tically) and offer it to a third party (the end user, or another virtual network provider).
Virtual network provider and cloud provider are used interchangeably.

e Virtual network (or cloud) user A user that requests, uses, and consumes (shared) virtual
network resources provided by a virtual (or cloud) network provider. This covers cases like
Mobile Virtual Network Operators), or enterprises with their corporate network,
or service/application/content providers (such as social media/community networks). As for
provider, virtual network user and cloud user are used interchangeably.

6 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

‘\\ Date: July 29, 2011 Security: Public
\ N Status: Final Version Version: 1.0

3 Guidelines

This chapter presents general principles and guidelines that can be applied to all architecture work
being done in[SATL] We also introduce frameworks for each of the Themes identified for the project:
Security, Network Management, Inter-provider and Prototyping and Experimentation.

The coordination of the Themes is anchored in WP-A and the Project Management Team .
Supporters have been nominated and a resource budget for the support activities is available in
each WP.

In addition to the four Themes, migration guidelines are also described as migration represents
an important aspect of the SAIL project.

3.1 General principles and guidelines

Rather than trying to define here guidelines that would be specific to only one of our WP} we tried
to raise the abstraction level and identify the principles and guidelines that could be applicable to
all these architectures. We leave to each the care of identifying the principles and guidelines
which are specifically applicable to their problem domain.

There have been a lot of studies both from industrial and academic organisations on how to
establish good network, system, and software architectures. One major publication is The Open
Group Architecture Framework [8], which is the evolving result of discussion between
major IT players and academics from all over the world. IBM and Microsoft, which contribute to
the Open Group, have also made public such guidelines [13,/14]. IETF has proposed some guidelines
and principles for the Internet architecture [15,(16]. Some work is also currently ongoing at Europe’s
Information Society to identify the architecture principles of the future Internet [17].

The 4WARD project also established an abstract architectural framework for the Future Inter-
net [18]. Many of the results from 4WARD have been reused in the specific WP architectures,
mainly in WP-B.

The objective of the current section (and document) is not to repeat the numerous studies. It is
rather to pick among the major architecture principles those that are the most applicable to the
current project.

These principles are general rules that support the way in which the SAIL project sets its vision
and values about fulfilling its mission. Architecture principles are fundamental to making decisions
related to the design and construction of the SAIL architected system and can reflect a level of
consensus across the project about the SAIL target system and the project approach.

We explicitly kept this list of principles and guidelines to a bare minimum to prevent putting
too much constraints on the architecture work that could limit the range of potential solutions.

The principles have been split in two categories: technical and non-technical. For each principle,
we also provide its motivation.

Non-technical Principles

There are many non-technical considerations on the impact of the Future Internet. They include
social impacts, regulatory considerations, business models. These are studied in a separate report
from SAIL [19].

SAIL Public 7

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

Date: July 29, 2011 Security: Public ‘\\
Status: Final Version Version: 1.0 \

The non-technical principles ended up to be a short list. We did consider to include more generic
principles to take into account social aspects of the Internet such as environmental impact or digital
divide. We concluded that these principles would either have little applicability given the current
degree of abstraction of the technical solutions for the first class of principles or have very low
acceptance among some of the project stakeholders for the second category.

Constant Change

Principle The only thing that can be taken for granted is that the Internet is changing.

Rationale Whatever we perceived as the possible foreseeable future, there will be technologies, ap-
plications, business roles or regulations that will pop-up and that will put new unexpected
considerations that may deprecate principles that are deemed of most importance today.

Business Model

Principle The architecture shall support a variety of business models.

Rationale No one can predict how the technical solutions for the Future Internet described in
SAIL will be deployed and who will be the main drivers for these technologies. The
technical architecture should not constrain innovation and creation of new businesses or
new business models and it should be able to adapt to innovations both from the technical
and business sides.

Legal Constraint

Principle The architecture should not break or force applications to break legal regulation.

Rationale To get regulatory organisations to buy in the technological solution proposed by SAIL, it
is of primary importance that the architecture allows to support legal constraints imposed
by countries and international regulatory bodies. This includes but is not limited to
privacy and intellectual property rights. In many cases, however, the legal constraints
need to be resolved at the application level rather than the network level.

Technical Principles

The technical principles address mainly an openness of the solution to allow for evolution over time
yet ensuring sustainability of the achieved results.

Technology Independence

Principle Architecture should not depend on specific, existing, or to-come technologies.

Rationale Technologies come and go. New technologies are introduced and old ones are made
obsolete. The services defined in SAIL should operate in a large variety of technologies,
current or still to be invented. Actual implementation of the architecture will have to
make technical choices based on current technologies. Nonetheless, the architecture should
be at an abstraction level that can be implemented with evolving technologies.

Application Independence

Principle The architecture should not favour a specific application.

Rationale Future Internet should allow all types of applications to be deployed. New applications
will be created to fulfil new needs or to replace existing ones. Favouring a specific set of
current applications might hinder the introduction of new ones.

8 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

‘\\ Date: July 29, 2011 Security: Public
\ N Status: Final Version Version: 1.0

Security and Privacy Built-in

Principle The Architecture should avoid retrofitting security and privacy.

Rationale It has been proved that retrofitting security and privacy will lead to sub-optimal results.
If, for possible good reasons, security and privacy could not be included early on; alter-
natively, a validation should be carried out to assess the potential impact of not having
security or privacy addressed.

Reuse

Principle When possible, try to reuse protocols and systems rather than reinventing new ones.

Rationale There are (too?) many existing standards, protocols, and systems that offer a multitude
of functions and services. The reuse of existing protocols and systems eases the path to
the deployment of the architecture as it allows a smooth integration with existing systems
and a reduced effort of development.

Open Standards

Principle Interfaces between systems should be based on publicly available standards.

Rationale Standard protocols should be preferred to to realise interfaces as they provide a
looser coupling between systems and facilitate migration path.

Separation of Concerns
Principle Layering and abstraction should be used, where appropriate, to support separation of
concerns between functional entities.
Rationale A clear separation of ownership and control over data and resources usually reduces the
complexity and interactions between the components of a system.

SAIL being an Integrated Project , it is of major importance that the different systems
studied in SAIL integrate in a coherent overall architecture. This requirement has to be counter-
balanced with considerations for gradual deployment. This is expressed in the following two prin-
ciples.

Integration

Principle The architecture of each system defined in SAIL (NetlInf, CloNe, OConS) should allow
that system to integrate smoothly with the two other systems.

Rationale That is the purpose and benefit of having them studied as part of the same project.

Autonomy of Deployment
Principle The architecture of any system defined in SAIL (NetInf, CloNe, OConS) should not be
dependent on the presence of the other systems.
Rationale While it is important to identify and define the integration points between the systems,
to offer a smooth migration from the existing networks, each system should be able to be
deployed without the presence of the other systems.

SAIL Public 9

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

Date: July 29, 2011 Security: Public ‘\\
Status: Final Version Version: 1.0 \

3.2 Security Framework and Guidelines

The Security Theme addresses security and privacy. It is organised in SAIL as a thematically
oriented, coordinated activity across the technical [WPk.

3.2.1 Objectives

The objectives of the Security Theme were defined as follows:

e to create a coherent and comprehensive security framework in which the project results can
be evaluated regarding common security objectives and coherent security solutions,

e to understand what potential misuse could be and what remaining deficiencies are.

The minimum to achieve is firstly that the security solutions in the WPs are free of contradictions
and duplication of work. Secondly, this may encompasses a gap analysis, identifying missing func-
tions to achieve given security objectives. Additionally, as security and privacy-ensuring solutions
may sometime create trade offs with usability, the theme raises awareness for these dependencies.

3.2.2 Approach

As common approach to the projects activities in cloud networking, wireless access and information
centric networks, the WP individual security objectives were identified for presenting protection
targets on comparable level. speciﬁc security objectives are presented and discussed below (see
page . In the following project phase the Security Theme will address how these security
objectives are implemented.

3.2.3 Guidelines

The following lists some security guidelines that were identified. They are not derived from the
SAIL architecture work but applicable to it. They have emerged over years and have proven
themselves in best practices.

Use Security Services to Express Security Objectives

Guideline All properties concerning security objectives are expressed in terms of security services.

Rationale Security services are authentication and authorisation plus Confidentiality, Integrity and
Availability . This helps expressing security objectives on comparable level.

Cryptography to Implement Security Services
Guideline Viable implementation of security services will use and only use cryptography in achieving
security by design, as opposed to the approach security-by-obscurity.
Rationale Hiding secrets is short sighted and has tremendous disadvantages compared to mathe-
matical properties that ensure that secrets can not be computed in polynomial time in
cryptographic analysis.

Privacy vs. Security

Guideline Be aware that Security and Privacy may create a trade off.

Rationale Security and privacy may impose contradicting requirements. E.g. some privacy enforc-
ing technologies may be in contradiction to accountability. The project is aware
of this and attempts to design solutions that are balanced and clearly discussed and
presented to allow informed decisions.

10 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

‘\\ Date: July 29, 2011 Security: Public
\ N Status: Final Version Version: 1.0

Priority for Existing Security Solution

Guideline Any solution must first use existing and well-proven standards (reuse). Only if unavoid-

able new solutions are invented.

Rationale Existing security standards do not only represent an often considerable amount of in-
vestment. They most often have shown and proved that they behave according to their
specification and can thus be trusted to achieve the security properties that they specify.
It takes additional effort and time to assess a new solution, if it has the same quality or
not.

Select Security Requirements Carefully

Guideline To avoid over-dimensioning security solutions, a threat analysis and/or attacker model
should be developed. This identifies suitable security services and help to design their
implementation.

Rationale When gathering security requirements it is often observable that a shopping card mental-
ity appears and identifying and expressing requirements is somewhat excessive, because
resulting consequences are not clear or experienced. In the end one has to pay the filled
shopping card. Methodologies employing e.g. a threat analysis have helped a lot to
right-size requirements.

Don’t Hinder Security Management
Guideline Be prepared for and do not hinder security management to enable sustainability of the
solution.
Rationale Security Management maintains the protection level and helps to ensure that security
properties do not fade out over time, e.g. because of an increasing remaining risks or
new /enlarged vulnerabilities.

3.3 Network Management Framework and Guidelines

Management in general is concerned with questions about how to manage each of the heterogeneous
network and IT resources in the SAIL architecture both individually and in conjunction with other
resources. While individual work packages each define specific management concepts, the network
management theme focuses on the latter, providing the conceptual “glue” that allows to consistently
combine resources in terms of management across SAIL’s overall architecture.

3.3.1 Objectives

According to the SAIL proposal’s Annex I - “Description of Work”, the main objective of the
network management theme is to “define [...] an overall management architecture based on
[the| decentralised self-management paradigm”. For that purpose, the network management
theme proposes a set of guidelines that enclose general management procedures and interfaces
that should be implemented by the individual architectures of WP-B, WP-C, and WP-D, so that
management functions can be implemented consistently across these architectures. In order to not
hinder the implementation of management functions that may be specific to some network domain
and that do not need to be shared across SAIL’s overall architecture, the following proposed
guidelines are only recommendations. However, only those management functions that adhere to
any or all of the guidelines are able to integrate with the overall management architecture.

SAIL Public 11

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

Date: July 29, 2011 Security: Public ‘\\
Status: Final Version Version: 1.0 \

3.3.2 Interrelations

The definition of an overall management framework is dictated by some basic interrelations on
project, work package, task, and theme level in the first place. Figure [3.1] illustrates the relations
that the network management theme’s architecture takes into account. In the figure, key example
architectural elements are indicated for each work package and some of the themes (the security
theme does not have a specific component associated with it). Note that only conceptual themes
are shown, which excludes the prototyping theme.

| security maHagement | |

Security Theme

| 4WARD L sAIL !

i WP 4: INM b WP-D: CloNe WP-C: OConS WP-B: NetInf ;

E management . l < information NetInf cache :

! capability . ' /,’ flzﬁ:en(?:t'\:lvg;k management !

i Lo entity (IE) Netinf router H

i | [self-managing]| | ! A \\

: entity Vi Network Management Theme '

i | @ interdoHain management | | | .

E ' conceptual
= |_domain_| | i themesin
i ; SAIL

i P

2
i Inter-Provider Theme _

__

Figure 3.1: Interrelations on the project, work package, task, and theme level.

Firstly, the network management theme is centred around the concepts developed in WP-D’s
management task. This task is concerned with a broad functional scope including goal translation,
fault management, and resource management, hence defining a suitable baseline for the establish-
ment of guidelines that apply to the wider architectural scope across all of SAIL. We will show that
some of the concepts of WP-D are at the core of a number of the following guidelines, since they
are naturally compatible with the architectural concepts of other WP’s.

Second, Figure indicates the primary resources that are dealt with in other WPs and themes.
In WP-B, the main manageable resources comprise the NetInf Cache , the NetInf Router ,
and the [2]. In WP-C, the main resources of consideration are the Information Management
Entity ([E]), Decision Making Entity (DE)), and Execution and Enforcement Entity [3], which
are embedded within network elements, hence designate the manageable entities.

Third, we consider the conceptual themes, which have a close relation to the network management
theme. The inter-provider theme focuses on the domain concept, which is an essential abstraction
also in each of the technical work packages. Hence, inter-domain management questions are to be
aligned between this theme and the network management theme. The security theme is primarily
concerned with technical approaches to information privacy and ICT system protection. Since
security management is a natural part of any management architecture, coordination is also required
between this theme and the network management theme.

Fourth, management in SAIL is inspired by the concept of self-management, which is defined
in the 4WARD project under the term of In-Network Management and which applies au-
tonomous distributed management principles to individual network elements via the principal man-
agement elements termed Management Capability and Self-Managing Entity [20], [21],
[22]. In SAIL, some of these concepts are applied to different architectural elements: in WP-D,

12 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2
‘\\ Date: July 29, 2011 Security: Public
\ N Status: Final Version Version: 1.0

these elements are flash network slices (FNS) [4]; in the network management theme, these elements
comprise resources in general (see the second guideline for how to interpret resources).

3.3.3 Guidelines

In the following we propose a set of architectural guidelines for management in SAIL that is founded
on results of WP-D’s management task [4] and an analysis of WP-B’s and WP-C’s architectures as
defined in the current work package deliverables in [2] and [3], respectively. Because the architec-
tures in each of the technical work packages will be refined further, the guidelines may be modified
and amended accordingly as the SAIL project progresses. We note that the first guideline is of
nontechnical, whereas the following guidelines are of technical character.

Any of the following (technical) guidelines is non mandatory

Guideline Any of the following technical guidelines is in principle optional and components of the

overall architecture do not have to implement them.

Rationale This nontechnical guideline states that any of the network elements and other components
present in a productive networked system according to SAIL’s architectural framework
does not necessarily have to adhere to any or all of the guidelines. This guideline is
straightforward yet key in providing a flexible management system that can evolve and
migrate over time and that does not force all stakeholders to adopt a rigid management
approach from the very beginning. For example, upon the introduction of new networking
technology (a relevant example in the context of SAIL is OpenFlow switching technology)
that is still under development and its reliability may still be assessed, a stakeholder
may not wish to readily introduce the technology’s resources into the overall productive
resource pool for creating complex flash network slices. Further, whether a stakeholder
wishes to implement any or all of the guidelines may also depend on mutual benefits it
can achieve with other stakeholders. This is a well-known concept which is also found, for
example, in peer-to-peer-based information sharing, where a user is able to download only
when uploading at the same time. Sharing and using resources between stakeholders will
likely be subject to very similar laws, and it can be expected that adherence to guidelines
and consequently, the extent by which management knowledge and functions are shared
by individual stakeholders, will self-organize.

All architectural elements deemed manageable must be modelled as manageable re-

sources

Guideline Any element that is part of the overall SAIL architecture and that requires management

consistent with these guidelines must be modelled as a manageable resource.

Rationale In order to provide the homogeneous use of management functions, at the very basic
level, each architectural element that is to be managed should be modelled as a man-
ageable resource. This guideline is inspired by the architecture in WP-D, which defines
networking, processing (also termed computing), and storage as the basic resources for the
composition of flash network slices (FNS). The idea is that a resource possesses a number
of well-defined properties that enable it to be used consistently within the management
framework. Two important such properties are a resource’s unique identification and its
resource description. For example, resource discovery, a fundamental management func-
tion defined in WP-D, requires unique resource identification for resource enumeration,
and fault management (also defined in WP-D) requires homogeneous resource descrip-
tions to be able to negotiate with resource management on the replacement of a faulty
resource that is, for example, part of a flash network slice. In Figure for WP-C, the

SAIL Public 13

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

Date: July 29, 2011 Security: Public ‘\\
Status: Final Version Version: 1.0 \

information management entity (IE) and for WP-D, the NetInf cache and NetInf router,
must be modelled as a resource if this guideline is to be satisfied.

The context of a resource is to be published in order to allow extended management

Guideline The context of a resource is to be published and described alongside with the manageable

resource in order for extended management functions to become possible.

Rationale While the previous guideline provides information about the resources a stakeholder is
able or willing to share in terms of management, this guideline requires that additional
properties of the resources’ context are to be published. Usually, this context corresponds
to the domain within which the resource is located, such as the NetInf router of a network
provider. The context may also correspond to other suitable forms of abstractions, such
as network layers (e.g. the NetInf layer, see Figure 3.3 in [2] and Figure [5.7)), which is a
further suitable form of structuring e.g. within a domain. The context may define any
conditions or restrictions that are applicable when manageable resources within the do-
main are used. The context covers domain-specific knowledge that is relevant for handling
that resource in terms of management. A typical example that also relates to security
is the fact that encryption may be subject to legal restrictions, more concretely, it may
allow only certain upper bounds on the bit length of encryption keys. If two domains use
different such restrictions, a common denominator may later be chosen that consistently
combines the resources from different domains such that legal restrictions are satisfied.

So far, guidelines address manageable resources and their context. This allows the usage of
resources in their correct context for management purposes, but it does not allow the use of man-
agement functions that may have been defined in some part of the overall SAIL architecture. The
following guideline concretises the functional part.

infrastructure infrastructure
service service
configuration/
algorithm
control data

management
function

management
function

controller
interface

collaboration
interface

status reports/
updates

Figure 3.2: Interaction between management functions via WP-D’s two types of interfaces.

Management functions shall be implemented and published by making use of the two
types of management interfaces defined in WP-D, namely, the controller interface and
the collaboration interface.

Guideline Each management function that is provided by any of the architectural components shall
make use of the controller and collaboration interfaces defined in WP-D, which define
how management functions communicate with one another.

Rationale WP-D defines in [4] a specific approach of how management functions are to communicate

with one another in order to build more complex management functions from composition.
In Figure 5.2 in [4], which we show for reference in a simplified form in Figure two
generic interfaces are defined as follows. On one side, according to [4], via the controller
interface, management services and algorithms are created, configured and destroyed.

14 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2
‘\\ Date: July 29, 2011 Security: Public
\ N Status: Final Version Version: 1.0

On the other side, via the collaboration interface, continuous information to relevant
recipients, such as updates about resource states, reports of potential faults etc. are
published.

Typical examples for management functions in WP-B are distributed cache management, which
is distinguished into caching at the network edge and in-network caching (Section 2.1.5
in |2]), and management of persistent data storage (Section 2.1.6 in [2]), which closely
relates to storage resources that are also a basic manageable resource in WP-D. In WP-C,
one example of an important management function is connection management, where the
connection between different endpoints is appropriately managed throughout the lifetime
of that connection.

A common data model shall be used to describe manageable resources, contexts, and

functions.

Guideline A common data model, sufficient to express all relevant aspects of an overarching man-

agement architecture, shall be used to describe all manageable resources, their contexts
(e.g. domains, layers), and management functions.

Rationale A data model that is understood by an overarching management architecture is essential
to be able to build complex management solutions by means of composition. Typically,
such a data model should be standardised, in order to achieve basic agreement between
different stakeholders. Especially in the context of SAIL, stakeholders are diverse, ranging
from hardware manufacturers to solution providers, each being involved in some aspects of
management, especially resource management. One part of this data model shall be based
on WP-D’s data model, described in Chapter 3 in [4]. Furthermore, such a common data
model is essential in order to build the knowledge plane illustrated in Figure 5.3 in [4].

3.4 Inter-provider Framework and Guidelines

This section describes the work that needs to be done in the work packages of the project
in order to come up with clean and future-proof definitions and implementations of the domain
concept and inter-domain interfaces. The guidelines developed in the Inter-provider Theme will
guide the relations between providers. They also apply within a provider, when different network
domains are identified and need to be cleanly isolated.

3.4.1 Objectives

The main objective of the Inter-Provider theme is to make sure that the solutions proposed by [SAIL]
overcome the lack of attention given in IP with regard to network domains: the Internet was born
as a flat network and provider domains were included as a patch. The protocol governing inter-
provider routing information exchange in the Internet is BGP-4 [23]. Despite being the Interdomain
routing protocol of choice, it has flaws that have affected the integrity of the whole Internet with
routing storms, traffic diversions through malicious or just careless operation, etc.

The Interprovider Theme will make sure a common understanding of the domain concept is
achieved in [SAIT] This common understanding will be the basis for the definition of the domain
concept in the different work packages. Once this objective is achieved, the Theme will derive the
functionalities needed for the inter-domain interfaces.

3.4.2 Guidelines

The Interprovider Theme is unifying the work on the interfaces between domains (as understood
by each [WP)). When looking at the current Internet’s issues, the three topics that need an urgent

SAIL Public 15

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

Date: July 29, 2011 Security: Public ‘\\\
Status: Final Version Version: 1.0 SALT
answer are:

1. Definition of the domain concept
2. Definition of the information exchanged between domains
3. Trustworthiness of the information published by a domain

These issues have resulted in the following guidelines:

Each technical WP must have a definition for a domain
Guideline Each is working at different levels in the communication stack and the concept of
domain may vary depending on the context. However, there must be a clear definition
of the domain concept in each work package.
Rationale Inter-provider work needs to be embedded in the work packages. Thus, each will need to
establish a common understanding of what domain is. This work is progressing correctly.
Chapter [2] includes the terminology used in the different [WPk.

Information exchanged at the border between domains
Guideline Each work-package must identify a minimum set of information that needs to be published
in the interdomain interface in order to make inter-working between domains possible.
Rationale An example of current problems in the Internet regarding the information advertised by
Autonomous Systems is fragmentation: do not advertise the best aggrega-
tions of their assigned prefixes and bloat up the routing tables in the Internet’s Default

Free Zone (DFZ)) [24].

Information published at inter-provider interfaces needs to be trust-worthy

Guideline The WPk need to make sure that the information provided by one domain to other
domains is legitimate and will not induce traffic diversions or have any other adverse
effects on the overall network.

Rationale One of the main problems of today’s BGP-4 implementation is that despite proposals
to introduce packet signatures, Public Key Infrastructure infrastructures, etc., it
is still impossible to make sure that the prefixes advertised by an [AS| are not assigned to
another [AS| This practise has recently been denounced before the US Congress.

This topic will need to be addressed in cooperation with the Security Theme.

3.5 Prototyping and Experimentation Framework and Guidelines

3.5.1 Approach

In this section, we discuss principles, guidelines and requirements for the SAIL prototyping and
experimentation (validation) activities, as they are managed by the cross-functional Theme Proto-
typing and Ezxperimentation. The objective in this theme is to ensure the necessary project-wide
coordination and consolidation of prototyping and experimentation activities in order to foster a
roadmap for the practical activities across the work packages. This covers several stages from
early partner-specific experiments, to clustered [WP| prototypes, finally resulting in a project-wide
demonstration at an industry-relevant event by the end of the project.

The SAIL project aims at compelling, prototype-based evidence that its research results and
innovations will be a core part of the Network of the Future. To achieve this by the end of the
project, we use a more agile approach than usually done in a research project. In a first phase
(until month 18), the prototyping activities have early started from a bottom-up perspective, both

16 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2
‘\\ Date: July 29, 2011 Security: Public
\ N Status: Final Version Version: 1.0

at partner and [WP]levels, with minimal overall planning and cross-task specification work based on
this coordinating Theme. This allows an immediate transfer of experience gained in early phases
to the second project phase (month 19-30). This phase is then characterised by an increasing
effort on inter-task and cross{WP| cooperation in the form of cooperative federation rather than
full integration of the developed system components. By this approach, we minimise the overall
dependencies and risks and allow the project to adapt to theoretical achievement and progress
concurrently and quickly — leaving the freedom to change and adapt to creative input.

3.5.2 Objectives

The goal of the experimental approach in SAIL is to prove that the SAIL research results are
mature innovations satisfying the initially postulated expectations. This includes:

e cither, demonstrate innovative (i.e differentiating) solutions (functions, features, scenarios)
to known/existing requirements or problems

e or, demonstrate basic (unique, first) solutions (functions, features, scenarios) to innovative
requirements or problems.

Credible evidence for these innovations shall be achieved by practical validation in multiple
stages:

e By prototyping that can be used to validate specific aspects (properties) of innovative model,
system or component designs against the initial assumptions (requirements). A prototype
typically simulates only a few aspects of the features of the eventual technical system. Basic
prototype categories are, among others, proof-of-concept prototypes (checking feasibility),
functional prototypes (checking required functions), or visual prototypes (checking look-and-
feel).

¢ By experimentation as a means in the scientific methodology that arbitrates between com-
peting models or hypotheses. Experimentation is also used to test existing theories or new
hypotheses in order to support or disprove them. However, an experiment may also test a
question or previous results. From that, it is clear that experimentation requires a realisation
of a prototype of any kind.

e By demonstration, which is a scientific/technical experiment carried out for the purposes
of proving scientific/technical effects or solutions, rather than for hypothesis testing or knowl-
edge gathering (although it may originally have been carried out for these purposes).

SAIL does not aim at conducting field trials or massive test deployments in operating network
environments.

3.5.3 Principles

The stages as described above require not only a prototype realisation of the innovative solution,
but also a validation framework that is used to control the test environment and allow identifying
initial - as reproducible as possible - conditions, including:

e Setting the environment conditions and control the pre-conditions;
e Variation of input / modification of [scenario, network, component] configuration;

e Measurement and visualisation of output / [network, component] behaviour.

SAIL Public 17

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2
Date: July 29, 2011 Security: Public ‘\\
Status: Final Version Version: 1.0 \ N

Hence, the following principles are identified as essential for the validation framework:

Control of Pre-Conditions
Principle The architectural framework for validation shall be able to control and identify relevant
environmental conditions and system pre-conditions.
Rationale This is necessary in order to allow a reproducible or comparable course of experiments
or demonstrations. Some degree of automation would be preferred for the purpose of
regression tests.

Observe System Behaviour and Output
Principle The architectural framework for validation shall be able to measure, monitor and visualise
relevant system reactions and outputs.
Rationale This is necessary in order to enable comparison of expected and actual system behaviour,
as well as a root cause analysis in case of failure. Some degree of automation would be
preferred for the purpose of regression tests.

3.5.4 Architectural Framework for Validation

Therefore we sketch an architectural framework (see Figure that can be used as a model across
all work packages to coordinate their experimental activities, and thus can drive further cooperation
initiatives. Besides the main components, i.e. the Component under Test/Consideration and its
control and management component, we identify the need for (i) a Test Management component
to initiate and configure the test system, (ii) a test application component driving application
scenario sequences and (iii) and a evaluation component to monitor, display and visualise the system
behaviour. The use of specific tools for the comparison between expected and actual behaviour will
depend on the specific scenario, since it might suffice with pure appearance.

Whereas the control and management interfaces as well as the data/service interfaces of the
component under consideration are the interfaces described upon the guidelines of this architecture
document, the interfaces T1 to T4 are interfaces specifically needed for validation purposes and
cooperation between common parts of the environment.

Typically, the validation environment will require realisations in a distributed network envi-
ronment involving multiple nodes and links, however virtualisation techniques could be used to
integrate the different parts on a common or unified platform.

Within this framework, the following technical challenges need to be considered in more detail:

e How to extend a cooperation and interoperability concept of components to a interoperability
concept of the validation environment?

How to go from a (partner) component demonstration to a demo?

How to go from demo to project-wide demo?

How to interface/combine/integrate crossJWP| test applications and run-time environment?
e What are the candidates for use in a common validation environment, e.g. re-combination of
test applications, traffic generation tools, monitoring tools, visualisation tools?
3.5.5 Guidelines on Validation Process and Framework

One of the project goals is a project-wide demonstration at an industry-relevant event by the end
of the project. Even though this is not necessarily based on an integrated prototype, it will require
a project-wide coordination of the scenarios and use-cases that are subject to respective prototypes

18 Public SAIL

Document: FP7-ICT-2009-5-257448 SATL/D-2.2
‘\\\ Date: July 29, 2011 Security: Public
Status: 1.0

Final Version Version:

T1: trigger Man-:;ztment \‘\\ T3: start & configure
test/use case .- *~<._ evaluation
/// : T2:vary environment\‘\\

e C control ;and configuration \\‘
OrivingScenario |_interface | COMPONEN | 1. mopiy,_| et Evaluation
Test Application ControI&Monito.ring interface Visualizaticl)n)

[|

D: data/servjce

- Component
interface

under
Test/Consideration

Figure 3.3: Prototyping, Test and Experimentation Framework

and their realised features. A detailed description and specification of the related inter{WP] topics
will be given in the Deliverable DA.9 due in month 21.

Coordinated Realisation of Inter-WP Scenarios and Use Cases

Guideline Features of prototypes realised at a[WP|level shall follow the common storyboard outlined
in the Deliverable Description of project wide scenarios and use cases in order to
assure functional compatibility across the @Is (at least pairwise over two, however
preferably over all[WP).

Rationale Without coordination of the features to be realised, there is the risk of disjoint common-

alities between the [WP] parts.
In order to ease cooperations between the project prototype parts, the following technical guide-
lines on the prototyping environment have been identified:

Realisation of Inter-WP Interfaces
both for the executing components as well as for the test environment components

e The inter-WP interfaces shall be lightweight, easy to describe and to implement.

e The inter-WP interfaces shall be extensible on a peer-to-peer basis, avoiding the effort for
overall project-wide specifications.

e The technology for realising inter-WP interfaces shall be supported by many commonly-
used development environments, not posing strong restrictions on availability and purchasing
specific tools.

Use of Virtualisation Techniques

e Virtualisation techniques shall be considered as a means to abstract from heterogeneous
hardware and software platforms and increase the opportunity to cooperate between project

SAIL Public 19

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2
Date: July 29, 2011 Security: Public ‘\
Status: 1.0 \\

Final Version Version:

parts.

e The selection of virtualisation tools shall take into account their availability on many commonly-
used OS/HW platforms.

e Virtualisation techniques shall be used to up-scaling of trials with limited HW resources.

e Virtualisation techniques shall be able to integrate physical environments and devices as
necessary (e.g. use of physical mobile devices in an heterogeneous wireless access environment)

Provisioning of Common Testbed/Network Facilities

Common testbed /network facilities for the project-wide experiments and demonstrations would be
desirable, under the following requirements:

e Common testbed /network facilities shall provide open access for project partners from remote.

e Common testbed/network facilities shall take into account the need for (trans-)portability
for demonstration purposes and the access availability at these locations .

e Common testbed/network facilities shall provide virtualisable network resources, possibly also
beyond (below) IP layer functionality.

The following topics describe the procedure to be followed for a best practice experimental design
and are given here as guidelines on the validation process:

e Problem statement: which aspect is under consideration? problem to be solved, hypothesis
to be tested, aspect/property to be validated

e Describe model/realisation assumptions and abstractions, constraints
e Identify system pre-conditions and input parameters

e Specify expected experimental outcome

e Run prototype test, experiment or demonstration

e Document actual experimental outcome

e Compare expected outcome vs. actual outcome, and evaluation: passed or failed

3.5.6 Guidelines on Free and Open Source Software
3.5.6.1 Approach

The use and/or distribution of Free and Open Source Software (FOSS) (as opposed to proprietary
code) has numerous advantages to the project partners, including cost savings (by elimination
of royalty and deployment license management), increased productivity and flexibility, increased
software reliability and stability (due to more users/developers/testers in the open source commu-
nity providing feedback, bug fixes and testing), increased visibility and accelerated dissemination,
among others. This applies in particular for the use of FOSS in the SAIL project prototyping,
experimentation and demonstration activities.

There are also disadvantages, including the complexity of FOSS licensing (e.g. when a FOSS
distribution has multiple dependencies, i.e., consists of multiple software packages, each subject to
different license terms), increased risks or liabilities due to the absence of warranties and indemnities
normally provided for proprietary software, deleterious impacts on certain commercial partner

20 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

‘\\ Date: July 29, 2011 Security: Public
\ N Status: Final Version Version: 1.0

interests, and potential issues associated with ownership of intellectual property originating from
unknown and questionable sources, etc.

The purpose of these guidelines is to maximise the benefits of FOSS to the SAIL project while
mitigating the associated risks.

In this context, [FOSS]is defined as:

e software provided to Licensor royalty-free in source code form, under a license including, but
not limited to, one approved by the Open Source Initiative (OSI)}'| or

e proprietary software provided to Licensor royalty-free in binary code form, under an end user
license agreement that is accepted without a signature, or

e shareware provided to Licensor free of initial charge, such as on a trial basis, but where a fee
may become due once the user decides to use the software beyond the trial period, or

e public domain software

There is no single, universally used definition for FOSS. Here the term FOSS comprises both soft-
ware provided free of charge as well as software provided in open source or closed source fashion,
and any combination thereof. It attempts to capture that software which, from a corporate per-
spective, presents particularly noteworthy risks because it can be obtained, in most cases, without
signing a written license agreement, and the license agreements applicable to it tend not to be
thoroughly reviewed in all cases.

3.5.6.2 Legal Guidelines

The project partners shall be committed to carefully managing the use of Free and Open Source
Software (FOSS), both within the project consortium and when releasing and publishing code as
a project result.

This includes as a legal obligation of each partner:

e Identify any FOSS components intended for use within the project consortium and when
releasing and publishing code or in proposed service or product offerings as a project result.

e Ensure that FOSS license obligations are met and do not interfere with the Intellectual
Property Rights and Access Rights of the consortium agreement.

e Manage FOSS according to the project publication rules of the consortium agreement, when
publishing, subcontracting, outsourcing, modifying and/or contributing FOSS to open source
projects.

e In project-internal partner cooperations, ensure that use of FOSS by one partner does not
impact or copyright of other project partners or has undesired /unexpected impacts (e.g.
need for disclosure or publication of project results) on these.

A list of most common license terms and conditions, ordered by name can be obtained from the
OSI Website [26].

"http://www.opensource.org/

SAIL Public 21

http://www.opensource.org/

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2
Date: July 29, 2011 Security: Public ‘\\
Status: Final Version Version: 1.0 \ N

3.5.6.3 SW architectures involving GPLed FOSS parts

We discuss briefly the risks when using FOSS under GNU General Public License [27] and
the implication on SW architectures involving GPLed parts, as it is a commonly used model (e.g.
Linux kernel).

The GPL was designed to be the antithesis of the standard proprietary license. To this end,
any modifications that are made to a GPL program are required to be given back to the GPL
community (by requiring that the source of the program be available to the user) and any program
that used or linked to GPL code is required to be under the GPL. The GPL is intended to keep
software from becoming proprietary. As the last paragraph of the GPL states: “This General
Public License does not permit incorporating your program into proprietary programs” [28].

From this, we conclude that using GPLed FOSS within the project may not be compliant with
the SAIL consortium agreement, because of the risk of so-called GPL contamination, i.e. its impact
on other partner’s software licensing rights, forcing it to be also under GPL.

The GPL is a complex license, so here are some rules of thumb when using GPLed SW with
implications on software architecture (but without any legal warranty and without claiming com-
pleteness):

e The Licensor can charge as much as he want for distributing, supporting, or documenting the
software, but he cannot sell the software itself.

e The rule-of-thumb states that if GPL source is required for a program to compile, the program
must be under the GPL. Linking statically to a GPL library requires a program to be under
the GPL.

e The GPL requires that any patents associated with GPLed software must be licensed for
everyone’s free use.

e Simply aggregating software together, as when multiple programs are put on one disk, does
not count as including GPLed programs in non-GPLed programs.

e Output of a program does not count as a derivative work. E.g., this enables the gcc compiler
to be used in commercial environments without legal problems.

e Since the Linux kernel is under the GPL, any code statically linked with the Linux kernel
must be GPLed. This requirement can be circumvented by dynamically linking loadable
kernel modules. This permits companies to distribute binary drivers, but often has the
disadvantage that they will only work for particular versions of the Linux kernel.

e The common interpretation is: code that runs in the same address space as GPL code, is
contaminated, which in turn means:

— Linux application running in user address space: no contamination

Linux drivers running in the kernel address space: contamination

— Static linking: GPL libraries are contaminating

Dynamic linking: GPL libraries may be contaminating. However, dynamic linking is still
not very clear in GPL-V2, but has been clarified in GPL-V3 in that the requirements
that must be fulfilled for a contamination to occur are more severe than in GPL-V2.

e Communication via remote procedure call, socket, pipe, command line arguments: no con-
tamination

e In object-oriented languages: Sub-classing GPL classes is derivative work: contamination

22 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2
‘\\ Date: July 29, 2011 Security: Public
\ N Status: Final Version Version: 1.0

In more complex cases, legal expert advice and evaluation is necessary, which cannot be given
here. Some hints may also be found in FAQ lists |29].

From the above examples, it should be clear that carefully identifying and managing licenses of
FOSS to be used in the project prototyping, experimentation and demonstration software as well
as a conscious SW architecture design avoiding possible license clashes is in the interest of each
partner in order not to infringe contractual obligations.

3.5.6.4 FOSS licenses that are less stringent than GPL variants, e.g. NewBSD

BSD licenses are a family of permissive free software licenses. The original license was used for the
Berkeley Software Distribution (BSD), a Unix-like operating system after which it is named. The
first version of the license was revised, and the resulting licenses are more properly called modified
BSD licenses. Two variants of the license, the New BSD License/Modified BSD License [30] and the
Simplified BSD License/FreeBSD License [31] have been verified as GPL-compatible free software
licenses by the Free Software Foundation and have been vetted as open source licenses by
the Open Source Initiative, while the original, 4-clause license has not been accepted as an open
source license and, although the original is considered to be a free software license by the FSF, the
FSF does not consider it to be compatible with the GPL due to the advertising clause [32].

The BSD licenses have fewer restrictions on distribution compared to other free software licenses
such as the GPL or even the default restrictions provided by copyright, putting works licensed
under them relatively closer to the public domain.

The BSD License allows proprietary use, and for the software released under the license to
be incorporated into proprietary products. The New BSD License/Modified BSD version allows
unlimited redistribution for any purpose as long as its copyright notices and the license’s disclaimers
of warranty are maintained. The license also contains a clause restricting use of the names of
contributors for endorsement of a derived work without specific permission.

Works based on the material may be released under a proprietary license or as closed source
software. It is also possible for something to be distributed with the BSD License and some other
license to apply as well.

This is the reason for widespread use of the BSD code in proprietary commercial products,
and may therefore be the right choice for licensing code generated under the SAIL consortium
agreement.

For an example how to deal with (acceptable) licensing in the context of a FP7 project, see the
pages of OpenNetInf related to some code released as a result of the 4AWARD Projectﬂ:

e licenses of used software:
http://www.netinf.org/opennetinf/libraries-licenses/

e licenses of code generated and published in relation with the 4AWARD Project:
http://www.netinf.org/opennetinf/source/| and
http://code.google.com/p/opennetinf/

3.5.6.5 Technical Guideline
As a conclusion from the discussion above, the following technical guideline should be noted:
Software Architectures Involving FOSS

Guideline The software architecture for the SAIL prototyping, experimentation and demonstration
activities shall be aware of the FOSS licenses involved in the realisation, and shall design

Zhttp://www.fsf.org/
3http://www.4ward-project.eu/

SAIL Public 23

http://www.netinf.org/opennetinf/libraries-licenses/
http://www.netinf.org/opennetinf/source/
http://code.google.com/p/opennetinf/
http://www.fsf.org/
http://www.4ward-project.eu/

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2
Date: July 29, 2011 Security: Public ‘\
Status: 1.0 \\

Final Version Version:

interfaces and mechanisms in order to separate software components in a way as to avoid
proliferation and contamination of license conditions across the boundaries, especially
between partner contributions.

Rationale Conclusion from the previous discussion.

3.6 Migration and Interoperability Framework and Guidelines

This section is intended to identify the most relevant migration topics and issues, with a view to
define a migration path for the technologies being developed by SAIL. To start with, two main
areas are proposed, as briefly described below.

3.6.1 Technical challenges

Migration often represents a major challenge and represents an obstacle against widespread de-
ployment of new network technologies. Usually, a number of migration techniques are available:

e Overlay techniques, to enable new technologies to be deployed on top of existing infrastruc-
ture, including the Internet, while also providing distinctly novel features. NetInf applied
on top of the current Internet can be taken as an example of such techniques; many other
examples exist (e.g., P2P, VoIP services via Skype).

e Translation techniques, to allow communication between different systems or networks, usu-
ally though protocol mapping. This has been used for quite some time in the telecommuni-
cations world in the past (e.g. interworking between traditional voice services and VoIP).

e Dual-stack techniques, to allow different protocols to co-exist in the same devices and net-
works. IPv4/IPv6 is the obvious example here.

Deployment of new network technologies on a large scale is often hindered by technical obstacles,
which may not be apparent in a small testbed environment, but become clear when it comes to
deployment on a large scale. Examples of such issues with new technologies are:

e Incremental deployment: can it easily coexist and inter-operate with legacy technologies?

e Multi-domain deployment: can multi-domain scenarios be supported, including interoperabil-
ity with/across legacy domains?

e Standardisation gaps: are there any gaps in standardisation that may preclude its widespread
deployment?

3.6.2 Business incentives and obstacles

The costs for enabling migration must be carefully considered. In general, it is very difficult for
a new technology to be deployed on a significant scale without sufficiently attractive business
incentives for all players involved. IPv6 perfectly illustrates the difficulty to introduce fundamental
changes in a large scale infrastructure (in this case, Internet) on a global scale — in spite of the
long-recognised issues with the IPv4 address shortage, the deployment of IPv6 has been weak
in several world regions, including Europe and North America. However, counter-examples can
also be found — for example, in the early 2000s, the deployment of MPLS technology required a
major infrastructure upgrade from network service providers. Nevertheless, the technology was
widely adopted. Two major differences between IPv6 and MPLS should be noted. Firstly, MPLS
provided a clear business case: VPNs; by contrast, IPv6 offered a number of new features, but none

24 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

‘\\ Date: July 29, 2011 Security: Public
\ N Status: Final Version Version: 1.0

of them provided a really attractive business case to be exploited. Secondly, the benefits of MPLS
could be enjoyed independently by each network operator; in contrast, the benefits of adopting
IPv6 will not be real until the technology has been deployed on a significant scale by other network
operators. As the example of IPv6 has shown, a limiting factor against the success of new network
technologies is the fact that each individual service provider will not be able to benefit from the
technology migration until others do it as well, which tends to postpone the migration process and
ultimately discourages the adoption of the technology. The issue of business incentives may be
particularly relevant when not a mere upgrade between technologies is at stake but the potential
emergence of new business models and new business players. An example where this might be the
case is cloud networking, with the blurring of the traditionally clear boundary between IT service
providers and network service providers and the potential emergence of new business players (e.g.
service brokers, combined cloud/network service providers). In summary, the topic of migration
must be analysed by WPs B-D, both from a purely technical perspective and from a business
oriented perspective.

3.6.3 Guidelines

From the very beginning, the incremental deployment of results was clearly defined as an ambition
of the SAIL project. In this regard, the definition of a viable migration strategy is an essential
requirement of the SAIL project.

Identify Migration Roadblock
Guideline Each WP must analyse migration issues and identify potential roadblocks against de-
ployment on a significant scale.
Rationale Past successes and failures have shown that migration issues can represent a major
roadblock against the widespread deployment of a new technology.

Progressive Deployment
Guideline There should be some benefit from deploying SAIL technology no matter how small is
the scale of deployment.
Rationale SAIL should avoid the pitfalls of global harmonisation requirements in terms of regulation
and standardisation. Several examples can be used to demonstrate that the need for global
compromises is often an obstacle against successful technology deployment.

Standardisation
Guideline SAIL should be in a position to actively contribute, and even to steer, the work on
standardisation in relevant bodies.
Rationale SAIL is active in technical areas that still lack a stable standardisation framework.
Any technical solutions should be developed taking into account ongoing developments
in relevant standardisation bodies.

Business Model

Guideline Clear business models must be defined by all technical WPs.

Rationale There should be a clear benefit to all potential players involved (e.g. end users, content
providers, infrastructure providers, service brokers).

SAIL Public 25

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

‘\\ Date: July 29, 2011 Security: Public
\ N Status: Final Version Version: 1.0

4 Topics to be addressed

This chapter enumerates the list of topics or concerns that should be addressed by each
architecture. It is intended to provide an informal check list for the [WP] architecture documents.

Offered services
Which services does the described architecture offer?

Used services
Which services does it use, and from which other systems or layers?

Applications
What are the potential applications to benefit from this system?

Main functions
What are the main function blocks of the architecture?
How are they related?

Interfaces and protocols
What are the main interfaces identified in the architecture?
Which protocols are required?

Security
What are the main security objectives?
How are they addressed?
What are the remaining risks not covered?

Network Management
What are the main challenges related to network management?
How are these challenges addressed?
How can a uniform data model for a common management architecture be achieved?
What management mechanisms can be provided to motivate stakeholders to share resources?

Inter-Provider
Which functions can span over multiple domains?
How are the responsibilities for the overall correctness of the network shared between inter-
connected domains?
How is a decision that affects or may affect several domains communicated?

Prototype and Experimentation
Are the functional blocks and interfaces realistically implementable?

Scenario and Use Cases
Which of the identified (WP and project-wide) scenarios and use cases were used to derive
the architecture?
How do the use cases map to the functional architecture?

Migration
Has potential migration path from the existing network have been identified?

SAIL Public 27

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

Date: July 29, 2011 Security: Public ‘\\\
Status: Final Version Version: 1.0 SALT
Deployment

What are the potential mapping/distribution to network nodes?

SAIL Overall architecture
How does the work package architecture fit in the overall SAIL architecture?
Which are the services used by the described work package that are offered by the work
package providing the underlying layer?

Evaluation and Open Issues
Does the architecture described fulfils the objectives set initially?
What are the strengths and weaknesses of the selected solution?
What elements require further investigation?
What are the known open issues?

The following topics don’t need to be addressed directly in the architecture documents as there
will be specific deliverables dedicated to them.

Migration
This will be studied in D.A.4 - Final migration description.

Business Models
This is covered by two deliverables: D.A.7 - New business models and business dynamics of
the future networks and D.A.8 Fvaluation of business models.

28 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

‘\\ Date: July 29, 2011 Security: Public
\ N Status: Final Version Version: 1.0

5 SAIL Architecture

5.1 Simplified Architecture

5.1.1 Overview

Figure illustrates a simplified view of the [SAIL] architecture, presenting the major relations
between the three main systems developed in SAIL. One could easily imagine that more interac-
tions can exist between each system (e.g. Cloud Networking using NetInf for exchanging
information or Open Connectivity Services using for allocating computing and
storage resources for its control and management planes). These additional interactions have not
been considered in this simplified version of the architecture because they don’t represent typical
use and add complexity without adding clarity. Even if the diagram illustrates a clean layered
approach, the readers should not assume a strict layering when will be fully deployed.

Applications

Network of Information

A 4 A 4

Cloud Networking

A 4 A 4 A 4

. -

Standard IP / L2 Networks [Open Connectivity Services

o

Figure 5.1: Simplified SAIL Architecture
Let us describe the architecture top-down.

e Applications Multiple applications types take advantage of the SAIL architecture — examples
are elastic content delivery, social networking, or next generation mobile communications.
Some typical use cases and scenarios are described in [25].

SAIL Public 29

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

Date: July 29, 2011 Security: Public ‘\\
Status: Final Version Version: 1.0 \

o NetInf defines an information-centric network with Information Object as the central
concept rather than focusing on node communication. NetInf provides a set of services to
identify, retrieve, and transport The NetInf naming scheme allows to uniquely identify
[0k independently of their location. Since many copies of the same [[O] can exist in the
network, NetInf provides a distributed name resolution service to determine the location of a
suitable copy of the [[O]and selects the appropriate transport mechanism to deliver the object
to the requester. The NetInf architecture is presented in [2].

° manages and controls computing, storage and connectivity resources. The multi-
provider approach of allows data centres and network provider to cooperate to offer
a service end-to-end. Applications can benefit of placing their data and running software at
the most appropriate place in the network. More details on the architecture can be
found in [4].

e In a fully deployed SAIL, owns and controls the connectivity resources. offers
services to extend IP and L2 networks. It provides mechanisms to deliver content the best

way, using a large set of connectivity technologies. Multi-P, which stands for multi-
point, multi-path, multi-protocol, enables to deliver data using the best connection available,
taking advantage of the fact that many devices use multiple connectivity technologies, with
or without wires. offers services that integrates the different layers and domains to
get a more efficient data plane. The architecture and services are defined in [3].

5.1.2 Interfaces
NetInf - CloNe interface

NetInf can use to allocate computing, storage, and connectivity in different parts of the
network. These resources will support NetInf infrastructure (e.g. [[O]caching and control functions).
NetInf can use the virtual infrastructure elasticity provided by to react to changing traffic
and load patterns, e.g., to dynamically create a cache in the network when serving data from such
a cache reduces traffic load, or deleting that cache when the demand is not there anymore.

From the perspective of NetInf is simply another virtual network user. In that sense, it
will use the interface provided by and presented in section 2.3 of [4].

One of the issues in the interactions between and NetInf (or any other user) is how
to take the best decision on which resources in the network to use to fulfil the specific needs of the
cloud user.

For example, in the elastic video distribution scenario presented in [25], the decision on where to
put the video nodes in the network depends on the actual video traffic and end-user usage patterns
(application specific) and the actual topology of the network including computing and storage
devices location (network provider specific). There are two trivial solutions to this problem. The
first requires that the application gets the topology information from the network provider to take
the placement decision. The second solution push the decision on the other side of the interface:
the application provides traffic and usage pattern to the network provider and the latter decide on
the resource placement. However, none of these solutions are ideal because neither the application
provider nor the network provider are ready to disclose the required information to the other party
as it might reveal business or technical secrets that give them a competitive advantage.

Some results are already presented by WP}D. The goal translation management function de-
scribed in [4] allows the network provider user to specify the required virtual infrastructure without
disclosing how this infrastructure have been determined. This only solves a portion of the problem
as the optimal virtual infrastructure might be dependent on the actual topology of the network
provider.

30 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

‘\\ Date: July 29, 2011 Security: Public
\ N Status: Final Version Version: 1.0

Further investigation on how to resolve this issue is still in progress and more results should be
available later in the project.

NetlInf - OConS interface

NetInf interacts with through the O, interface defined in [3].

There are mainly two classes of services that NetInf will use. Services in the first class
are those that facilitate the transport of [[O] That includes for example network coding functions,
multi-path and multi-protocol transport. For that class of services, the interactions from the NetInf
side will be under the responsibility of the NetInf Transport Service .

The second class of services can be used by NetlInf to establish the network part of the
NetInf infrastructure. This could be the case in domains where NetInf and are deployed
but is not.

Netinf interface with lower layers

In portions of the network where is not (yet) deployed, NetInf can use traditional transport
services based on IP, Ethernet or new innovative transport mechanisms. The NetInf architecture
includes a convergence layer to adapt the [NTS| to the different potential underlying networks.

CloNe - OConS interface

relies on the concept of Flash Network Slice to establish virtual network infrastructure
for the cloud users. The allows to connect computing and storage resources distributed in
the network in a single or multiple domains. To establish those [FNSk, can provide its own
mechanisms but can also rely on the services offered by such as the WAN Interconnectivity
for Virtual Networks.

Since architecture is modular and defines different services for managing computing, stor-
age or network resources, an alternate solution is to implement the resource management service

using as illustrated in Figure [5.2]

Infrastructure Service

(Compute) (Storage) C OConS >

Figure 5.2: Potential interactions between [CloNe| and [QConS)|

One of the issues identified in the management is the identification of the end-points. Each
of the end-points might be in different domains, using different naming schemes (public or private
IP addresses, node id, port id or name, ...). Moreover, the end-points might represent physical

SAIL Public 31

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

Date: July 29, 2011 Security: Public ‘\\
Status: Final Version Version: 1.0 \

or virtual entities (port, node, subnets, ...). There is a need for establishing a naming scheme
that allows to unambiguously identify the appropriate end-points. This issue has been partially
addressed in the |CloNel architecture.

CloNe interface with lower layers

In the absence of[OConS| the[FNSused by [CloN¢| can be implemented by several means. The CloNe
architecture document ([4]) provides a few potential mappings to existing mechanisms, including
L2 and L3 Virtual Private Networks (VPNE).

5.2 Theme Interactions

In this section, an overview of initial results from the Themes are presented. The actual description
of the Theme work results are (or will be) included in the corresponding work package deliverables.

5.2.1 Security

Amongst others, the architectures identify also the security and privacy issues and how potential
related threats are mitigated. According to the approach described in Section above, the
identified security objectives of NetInf,[OConS| and [CloNe are as follows.

[WP] B security objectives: NetInf is involved in developing the SAIL architecture and protocols
for an Information Centric Network (ICN) [2]. In ICNs generally, while one is concerned with
the usual security goals (confidentiality, integrity, availability/ authentication etc.) as in any
other host-based networking scenarios, there are new security considerations that arise. WPB
will be investigating (mainly) these new security considerations both at the architectural level
and for the specific protocols and prototypes that will be developed as part of SAIL NetInf. In
general, in an ICN, one is more interested in content-based security threats and mechanisms,
and it is to this that effort in WPB is being devoted.The approach being taken is to iteratively
identify threats and potential security services and mechanisms as the development of NetInf
proceeds.

The current threat model identifies a number of new ICN-specific threats, for example, “Con-
tent Mismatch”, which would occur if an object is requested, but some other object is returned
by the network. Various security services (e.g. “Naming Security”, “Content Integrity”) have
been defined that could assist in countering this threat, and some specific mechanisms are
being examined that can provide this service in an ICN. In this case, “Name/Data integrity”
mechanism has been defined that can be used as the basis for both security services. At
present, WPB has progress further in the handling of this threat and the related services and
mechanisms than for other identified threats.

The set of ICN-specific threats so far identified include:

e Content Mismatch (discussed above),

e Content Snooping, which is a traditional threat, that may be more easily exploitable in
ICNs,

e Privacy Invasion, again possibly made worse in an ICN since nodes frequently see entire
objects rather than packets,

e False Content Injection, which may be the ICN-equivalent of spam,

e Unauthorised Access, where a bad-actor may access an object intended to be limited to
some community,

32 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

‘\\\ Date: July 29, 2011 Security: Public

L Status: Final Version Version: 1.0

e Cache Pollution where a bad-actor aims to pollute an ICN content cache, possibly as
part of a DoS, and

e Mis-Routing, where a bad-actor influences ICN routing to their benefit.

Work on describing security services that can be used to counter these threats is ongoing, and
will have to address a number of difficult mechanism issues, for example, a key management
scheme that could scale to the number of objects in an ICN, and some form of authorisation,
that may have to be embedded into the objects themselves rather than be provided by the
ICN protocols. WPB will of course also need to address how some more traditional host-based
security services can be used in an ICN, for example, how to secure cache-update protocols.

[WP] C security objectives: Main contributions will be in the area of advanced mobility

management and transport capabilities in the network [3]. Hence security and privacy related
work concentrates on these topics. It addresses misuse prevention and how to ensure system
integrity, concentrating on the concerns newly introduced by these added capabilities. For
these advanced contributions the security services shall ensure

e the legitimate use of advanced mobility management that support effectively the dis-
tributed decision taking and enforcement,

e its misuse prevention and thus the potentially affected availability, and
e accountability of having used such mobility management functionality.

Regarding the controls of the connectivity resources to advance transport capabilities, security
services are not specifically advanced but have to show qualities that are not behind state of
the art, i.e.

e need to ensure the availability of functions and elements enabling the transport capabil-
ities and

e accountability is highly desirable, although the extent to which privacy concerns are
enforced forms a trade off.

[WP] C privacy concerns: Privacy requirements are tightly linked with security, with the overar-

ching requirements to ensure protection of users’ data and enable user control of the level
of this protection. Besides, we consider the broader case, which targets protection of data
belonging to operators, service providers or any entity related to either the use of the pro-
vision of services. Hence, the exposed information shall be adapted and filtered to
other entities depending on the particular policies, but still assuring the correctness of that
information. It is most unlikely that there will be either one or a unique solution, e.g. if these
entities reside in different legal frameworks and privacy becomes another flavour, or if the
shared information gets correlated with other data and thus is breaching privacy concerns.
In this sense, the privacy related work is intended to highlight potential issues relating to
privacy loss within the architecture, rather than propose specific solutions to ensure
it.

[WP] D security objectives and privacy concerns: [4] focuses on the development of a com-

plete and flexible architecture for Cloud Networking, with flash network slice capabilities,
which will operate as a reference model for deploying complex applications over heterogeneous
virtualised networks. Concerning the security task focuses on the cloud networking
security requirements and challenges [33], while also covering the more fundamental cloud
computing security aspects.

The following security objectives were identified to be relevant for cloud networking:

SAIL

Public 33

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

Date: July 29, 2011 Security: Public ‘\\
Status: Final Version Version: 1.0 \

e Availability, which covers the availability of the cloud networking services.

e Integrity, which defines the integrity of data, communication and processes throughout
the entire lifecycle of the accessed cloud networking services.

e Confidentiality, which includes the confidentiality of data located in the infras-

tructure and in communications.

e Authenticity, which requires the authentication of the infrastructure components
(both physical and virtual components) and the actors, viz. infrastructure service users,
infrastructure service providers and the resource administrators.

e Non-Repudiation, which proposes that the components and/or the actors cant repudiate
their actions at a later stage. This would ensure conformance to the operational policies
defined by the law, participating actors or institutions.

e Privacy, which ensures that the policies defined for handling the private information are
adhered to.

Current work includes a security function, which is part of the overall suite of management
functions to be deployable and manageable at every layer of the infrastructure, and its
integration with additional configurable modules to implement the security policies defined
by the participating entities. The security function shall accept the security goals specified by
the involved entities at various levels of the architecture, and translate it to the constraints on
the underlying resources. The modules include an authentication module to ensure assurance,
authentication and an overall trust structure to be implemented throughout the architecture;
and an access control policy module which allows the access control policies to be reflected
all the way down to the underlying hardware components.

5.2.2 Inter-provider

During this first year, the Inter-provider Theme’s main objective was to raise awareness that the
[SATL] architecture needs to take into account domains. This objective has been achieved in all
technical work packages.

WPB

At this stage of the project, WP}B has the clearest idea of what a domain means in the scope of
their work. It has constructs like Multiple Distributed Hash Tables to delimit domains and make
them inter-operate.

WP}C

[WP}C has embedded the domain concept in its use cases. The Data Centre interconnection use case
identifies different operational domains (the data centres themselves, the interconnection network
and the access networks) that need to inter-operate. This use case is the main candidate for the
definition and implementation of the inter-domain interface. Figure shows the interprovider
interfaces identified in this use case.

WPLD

[WP}D has started its work on inter-provider aspects after realising that the initial single admin-
istrative domain approach is not enough for their work. The attempt of defining a single-domain
network highlighted the need for inter-provider interfaces with clean definitions in the archi-
tecture. Currently, distributed and centralised resource information exchange mechanisms between

34 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

‘\\ Date: July 29, 2011 Security: Public
\ N Status: Final Version Version: 1.0

|Compute| | Storage | |Compute| | Storage |

| Networking | | Networking |

Data centre Data centre

Core Network

Access Network
Access Network

Figure 5.3: Interprovider interfaces in the data centre interconnection use case

domains are being investigated. Next steps include the definition of the information that needs to
be exchanged.

Interactions between WP-C and WPID

The use case regarding the interconnection of Data Centres using Open Connectivity Services
shown in Figure [5.3] provides a starting point for discussions between [WP}C and [WP}D, regarding
common functionalities in the interprovider interface that complements the current work of the
interface between these [(WPk.

5.2.3 Management

In this section we describe the first consolidated structure of a management architecture that applies
to all of SAILs partial architectures defined in the individual work packages and that adheres to
the guidelines defined in Section We have noted previously that the adherence to any or all of
the guidelines is not mandatory. We will indicate this in the following using examples in the NetInf
and OConS partial architectures.

We develop the management architecture’s concepts in two steps. In Section we present
the simplified architectural view of each work package that is based on the definitions of each work
package as laid down in the corresponding deliverables [244]. In Section we show how the
three simplified architectures can be combined in terms of management in a wider scope, to indicate
how the guideline adherence facilitates a homogeneous overall management architecture.

Note that it is not the ambition of this section to present a consistent architecture of all of
SAIL’s concepts that go beyond management. Furthermore, as in the case of the guidelines, since
the analysis is based on the current architectures of the work packages that are still subject to
change, further refinement will naturally be necessary as the SAIL project progresses.

5.2.3.1 WP-Specific Guideline Implementation

In this section we focus on the application of guidelines to individual work packages. The purpose
of this section is to provide a more detailed understanding of how the theme’s generic management

SAIL Public 35

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

Date: July 29, 2011 Security: Public ‘\\
Status: Final Version Version: 1.0 \

guidelines can be implemented in each work package, such that each work package is able to assess
the management approach in its context for further feedback and refinement.

WP-B: NetlInf

Figure [5.4] shows a simplified version of the NetInf architecture based on Figure 3.2 and 3.3 in
WP-B’s deliverable [2], and how management is integrated according to the theme’s guidelines.

(administrative)
domain NR NR

to/from
publisher
router >
management
-<~ ~~~~~~ \

proprietary "~
management ’

1
1
to/from i NR
requester {
<—> .
NRS | NC .
: [} :
: -Dé9 cache [e——
E BN management
-________Ljé off-path cache on-path cache
resource resource
idali ; ietary management
guideline-compliant _____ propriet . !
manageable resource <——> management interactions ¢ > interactions, possibly mixed
with data/control interactions
i : ; i 5 " interface providing
guideline-compliant proprietary ; wrapper interia
management function management function ! D guideline-compliant (subset of)
! } management functions

Figure 5.4: Management in the NetInf architecture, based on Figure 3.2 and 3.3 in [2].

In Figure we have depicted the main architectural elements of WP-B, including NetInf routers
(NR), Name Resolution Service (NRS) elements, and two types of caches: an on-path and an off-
path cache, where the former is integrated into an NR, and the latter is a separate architectural
element.

According to the theme’s guidelines, each architectural element is modelled as a manageable
resource, where certain information about the resource relevant for management is provided (we
show in Section how that information is fed into WP-D’s knowledge plane). Further, each
management function and function interactions are modelled either in a proprietary or native form,
that is, in compliance with the theme’s guidelines. In the case of proprietary management, a ” wrap-
per” interface may be implemented to tap into a subset of the management function’s capabilities
that are desired to be published to the overall management plane. This situation reflects the first
guideline, which states that guidelines are in principle non mandatory. In Figure this fact is
indicated for the bottom NRS. In the native case, interactions between individual management
functions occur according to the two management interfaces defined in WP-D (the controller and
collaboration interface, see Figur. Observe that management functions are general embedded

36 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2
‘\\ Date: July 29, 2011 Security: Public
\ N Status: Final Version Version: 1.0

into the network elements, which is partly inspired by the in-network management approach of
4WARD’s work package 4 |20] and also the approach supported by WP-D’s management concepts.
Embedding is often natural, because many functions are inherently distributed. This applies to
NetInf for cache management and the management of distributed NRS resources, where distributed
embedded management principles directly apply. Figure furthermore indicates a single domain,
which according to the theme’s guidelines denote the context of the architectural elements / re-
sources. Section provides more details on domains as contexts and on how a domain context
interfaces with the knowledge plane defined in WP-D.

WP-C: OConS

Figure [5.5]shows the main architectural elements in the OConS architecture, based on Figure 4.2 in
WP-C’s deliverable [3]. These include the Information Management Entity (IE), Decision Making
Entity (DE), and Execution and Enforcement Entity (EE), together with a selection of OConS
control interfaces (coloured lines).

(administrative)
domain

IE DE

=l

SR

=
[}

EE EE
.]
Node Node
proprietary proprietary
% management management
To knowledge and control and control
plane (see =~ fm==mqpmsss-m--——- o

Section 5.2.3.2)

Note: not all OConS
interactions are shown.

___________..

1

]

1

1

1

1
tmmmee——— -

Figure 5.5: Management in the OConS architecture, based on Figure 4.2 in [3]. Not all OConS
interactions are shown, for colour codes see Figure 4.2 in [3]. For symbols, refer to

Figure

Management is integrated into the OConS architecture according to the theme’s guidelines much
in the same way as for WP-B’s NetInf. A difference to NetInf is that in OConS, a node contains
multiple entities (IE, DE, EE). While the complete node can be modelled as a manageable resource,
it is also viable to model each of the individual entities of the node as a manageable resource. This
is primarily a question of granularity, and there is no restriction which granularity is to be chosen.
Consider the IE resource in particular. In Figure [5.5] we have indicated by two outward arrows
that the IE connects to the knowledge plane (also refer to Section . In terms of resources,
it makes sense from the viewpoint of the knowledge plane to consider only the IEs as resources of
interest, since they contain and manage information which is exactly the purpose of the knowledge
plane as discussed in [4]. As a consequence of the chosen granularity of resources in Figure

SAIL Public 37

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

Date: July 29, 2011 Security: Public ‘\\
Status: Final Version Version: 1.0 \

management functions that comply with the theme’s guidelines are implemented also on the level of
that resource, that is, each entity. Management interactions between entities (that is, manageable
resources), then occur also on the same level.

From the discussion of NetInf and OConS, a main observation therefore is that resources, and
as a consequence, management functions, may be modelled at any adequate level of detail (nodes,
entities, also layers and even domains), but appear homogeneous from the viewpoint of the man-
agement framework. This is particularly important because of the fact that WP-D introduces in
addition virtualisation concepts, in which this abstraction is also vital when physical and virtual
domains need collaborative management.

Figure further contains an example of an initial migration step, in which the management of
OpenFlow-related resources (that is, OpenFlow switches), is maintained on a proprietary level. This
is indicated by the fact that only the EE’s management function has a connection to the OpenFlow
switch. At a later stage, it is possible to add a guideline-compliant management interface also to
the OpenFlow switch that replaces the proprietary interface in order to integrate OpenFlow-related
management also in the overall management framework.

WP-D: CloNe

In the scope of the management theme, the cloud networking WP acts as the main source of
management concepts. WP-D’s deliverable [4] describes these management concepts in the context
of flash network slices (FNS) in detail. Due to the many possible architectural configurations in
WP-D, encompassing peer-based and hierarchical interactions and mixtures thereof that may be
applied in various forms to the data, control, and management plane, we focus in this section on
an example configuration to show how the theme’s guidelines also apply to WP-D.

Figure shows a setup in which two domains each contain two architectural elements (network
and storage) to construct a ”storage network” flash network slice (FNS). Management interactions
follow primarily the peer-to-peer paradigm but can be readily applied to hierarchical patters as
well (e.g. for goal translation), but which are not shown in the figure. Figure is based on Figure
2.4, 44, and 5.1 in [4], and Figure 11 in [22].

Let us first consider the physical domain at the bottom of Figure [5.6f This domain contains
physical resources of the substrate from which FNS can be created. In this example, the network
node (e.g. an OpenFlow switch) and storage node are both modelled as manageable resources
according to the network management theme’s guidelines. In the example, this is vital in order for
the physical resources to be available for assignment to virtual resources in the virtual domain for
constructing flash network slices (FNS).

The network node and the storage node each contain the three types of management functions
from Figure 5.1 in [4]. This way, both types of nodes can be controlled in terms of Distributed Goal
Translation , Distributed Resource Management , and Distributed Fault Management
. Interactions between any pair of these components is according to the two types of inter-
faces defined in WP-D and captured by the theme’s guidelines. Similar as in Figure the DRM
and the DFM both also communicate with the knowledge plane (not shown in this figure). On
node level, both network node and storage node communicate also via the two types of management
interfaces. On domain level, the physical domain may communicate with other physical domains
(shown in more detail in Section .

Consider now the virtual domain, in which network management functions (DGT, DRM, DFM)
are arranged in the very same way as in the physical domain. This is possible because conceptually,
virtual and physical resources are identical. In the example, the two virtual resources shown make
up a flash network slice, which may correspond to a ”storage network”. Compliance with the
guidelines shows that it is straightforward to set up management-related communication between
the physical and virtual domain, which corresponds to inter-domain management interaction. This

38 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

‘\\ Date: July 29, 2011 Security: Public
\ N Status: Final Version Version: 1.0

SA I L
[vitaa _ _ flash network slice (FNS) combining networking and storage ('storage network’)_ _ \
domain ~ 1 1
] Network Node node-level Storage Node | !
1| |IDGT management DGT 1
1 interactions 1 .
] via compliant] domain-level
| interfaces 1 management
virtual | ¢ 5 1 interactions
resources 1 - 1 via compliant
1| |IDRM DFM DRM DFM : interfaces
L el s «—>
* -] 3 | * * [T] | 17 % < >
: _:'ﬁ; SIS _"'r:H§ SIS]
1
=== ¥,
management interactions via compliant interfaces
between virtual and physical domain
/%T,ﬁ'aﬁﬁ' 4 Network Node node-level Storage Node \
DGT (e.g. OpenFlow)| Management DGT
interactions s .
via compliant .It domain-level
physical interfaces manage_ment
«— 5 interactions
resources < s via compliant
(substrate) DRM DFM DRM DFM interfaces
— | > | [| S| —>
* iy, SAe | * * e, S| * «—>

N)

* To knowledge plane (see Section 5.2.3.2)

Figure 5.6: Management in the CloNe architecture, based on Figure 2.4 and 4.4 in [4]. The figure
shows only an exemplary setup in the peer-to-peer interaction case, among many other
possibilities.

is possible because all management-related interfaces follow Figure 3.2] and can interact directly.
Note that the semantics of the interaction is not defined at this stage and is out of the scope of
the theme’s work, but must be sensibly composed by the algorithms defined in each of the work
packages.

5.2.3.2 WP-Overarching Guideline Implementation

In the previous sections, we have shown how the network management theme’s guidelines can
help in the establishment on homogeneous management architectures in each of the technical work
packages WP-B, WP-C, and WP-D. In the following, we show how in a broader scope, WP-
specific architectures are able to interact in terms of management. As noted, we do not claim
the interaction between WP architectures in more general terms than management. Nevertheless,
this section may serve as a valuable starting point also for discussions towards how to achieve a
SAIL-wide architecture that combines all WPs’ sub-architectures not only in terms of management
but also on the level of data plane, control plane, layering, etc.

In Figure we illustrate inter-WP management relations for a number of typical scenarios,
rather than providing an overall view of a complex system that combines all three technical work
packages’ architectures. It is then possible to combine these with the results from Section
into more complex setups that involve all WPs and their interrelations in terms of management.

Figure 5.7 a illustrates the interaction in terms of management between different functional
layers. We use the example of NetInf and OConS, based on Figure 3.5 in WP-B’s deliverable [2].
As noted before, management functions can be integrated at different levels of detail. In the
example, functions are shared on the level of a network element in the NetInf layer (NetInf router,
NR), on the level of a protocol layer (convergence layer), which may be implemented as part of the

SAIL Public 39

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2
Date: July 29, 2011 Security: Public ‘\
Status: 1.0 \\

Final Version Version:

SA 1L
NetInf NR [(administrative) domain (WP-B)) distributed
Layer
Y 1 manageable resource type 1: (EelIEs
000 H boC NetInf cache (storage) management
(WP-D)
A manageable resource type 2:
¥ NetInf router (networking)
_ resource
Eonvergence § % $resource description + context discovery
ayer ‘
'y 'y knowledge plane (WP-D) >
A 4 y ¢resource description + context rﬁSOUtr.CG
allocation
OConS layer TCP/IP f(administrative) domain (WP-D))
OF . manageable resource type 3:
H WP-D persistent storage
E: | | resource
manageable resource type 4: adaptation
WP-D processing
a. b. \ J
Figure 5.7: Inter-WP management interactions. — a. Management across layers, based on Figure

3.5 1in [2] and Figure 4.2 in [3] (NR: NetInf router; OF: orchestration function (OConS)).
— b. Types of manageable resources and domains as resource contexts and interactions
with the knowledge plane, based on Figure 5.1 and 5.3 in [4]

network stack of some types of network elements, and on the level of a specific function (OConS
Orchestration Function), which is part of a layer. All interactions between the management
functions are mediated via the controller and collaboration interface (Figure [3.2).

Figure[5.71b shows how different parts of the SAIL architecture, WP-B and WP-C in the example,
interact with the knowledge plane for the purpose of exchanging information about different types
of manageable resources and the context of these resources. In the top administrative domain,
WP-B’s resources are shared with the knowledge plane introduced in WP-D (compare to Figure
5.3 in [4]). These include, but are not limited to, NetInf caches and NetInf routers. In the bottom
domain, WP-D shares information about its resources also with the knowledge plane, including
persistent storage resources and processing resources (e.g. from cloud-based servers). Each resource
is described homogeneously according to the theme’s guidelines.

We have chosen the above example to show how this leads to a number of synergies that different
WP’s can in turn exploit in terms of management. Consider for example the NetInf router, which
may require additional processing resources to perform content-based forwarding. The processing
resource provided by WP-D may be appropriate for this purpose. Consider another example where
WP-D aims to extend storage resources to include short-term, cache-based storage in the network.
For this purpose, the Netlnf cache resources may be appropriate. In both examples, WP-D’s
distributed resource management functions, shown on the right side of Figure[5.7}b, can be employed
to determine such configurations and allocate the appropriate resources on behalf of different parts
of the SAIL architecture, such as in WP-B and WP-D.

Figure[5.7b also shows how information about the resources contexts can be shared, which can be
used to determine e.g. during resource allocation which resources are eligible for a certain purpose
at all. It is important to note that such context is beyond the description of individual resources and
describes additional restrictions on how these resources may be used. Such restrictions may include
domain-specific properties, for example, the maximum amount of a server’s processing capacity that
a domain may allocate to any other domain, or the maximum fraction of an individual NetInf cache
that can be allocated for other purposes than NetInf internal information management. All such

40 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

‘\\ Date: July 29, 2011 Security: Public
\ N Status: Final Version Version: 1.0

context is also shared with the knowledge plane and becomes available for the distributed resource
management functions provided by WP-D.

5.2.4 Migration

The Standardisation and Migration task is not yet started at this stage of the project. Results
from this task will be included in a separate deliverable due at the end of the project.

SAIL Public 41

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

‘\\ Date: July 29, 2011 Security: Public
\ N Status: Final Version Version: 1.0

6 Conclusion

In this document we put in place a set of principles and guidelines to support the architectural
work being done in SAIL.

In this first phase of the project, architectural work has been progressing well. The three technical
[WPk have established a first draft of their architecture. A first harmonised architecture has been
drafted putting the WP|in relation. We succeeded to identify the interfaces between the different
work packages so the WPs can integrate well in an overall architecture. The loose coupling between
the WPs enables a smooth migration path as it allows to deploy each WP separately.

The interfaces between WPs still need to be further refined. Some problems in the interfaces
between the work package have been identified and we are investigating potential solutions to
resolve them. Specific cross work package sessions are already included in the project agenda.

The applicability of the architecture to the overall project scenario and use cases defined in [25]
has still to be evaluated.

From the Theme perspective, each of them have enumerated their specific objectives and approach
and provided a comprehensive set of guidelines. This has been achieved despite the fact that in
the current project organisation, no resources are specifically dedicated to the Theme work. In
this first phase of the project, the efforts from Theme representatives in the WP were mainly
focused on resolving the issues in their specific work package, rather than contributing to the
overall harmonisation of the approaches.

It is seen a need that the Future Internet needs “to be secure, both to protect privacy and freedom
of information, and to minimise abuse” [34]. This is well considered in the SAIL project. Achievable
protection goals have been selected, security guidelines collected as best practice and security
objectives were carefully defined. Up to this stage, the approach taken to define development
directions, proves that security is taken seriously in the context of available resources.

The management theme has defined a set of guidelines that facilitate the integration of SAIL-wide
components in terms of management on the level of individual resources, the resources’ contexts (e.g.
the domain they are located in), management functions, and data modelling. Detailed examples
applying to individual WPs on one side and to inter-WP relations on the other side illustrate
how those guidelines can be implemented based on WP-D’s management concepts to achieve an
overall management architecture based on the decentralised self-management paradigm. Further
refinement of both the guidelines and architectural details is to be expected naturally as SAIL’s
individual architectures progress further.

All have a good grasp on the functions/services that are provided by a domain. Progress is
being made on identifying the information that needs to be exchanged over the interfaces between
the domains.

We have defined validation framework that will allow an easier integration of the multiple compo-
nents prototyped. Prototyping and experimentation effort will also help to validate the architecture
and clarify the WP internal and external interfaces.

Now that the architectural bases are in place, some effort will be dedicated to increase the
coordination and harmonisation of the architecture. The architecture work will keep progressing
during the remaining part of the project and a more complete architecture will be reported at the
end of the project.

SAIL Public 43

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

Date: July 29, 2011 Security: Public ‘\\\

Status: Final Version Version: 1.0 SALT
44 Public SAIL

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

‘\\ Date: July 29, 2011 Security: Public
\ N Status: Final Version Version: 1.0

Bibliography

1]
2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

The SAIL project web site. http://www.sail-project.eu/.

Petteri Péyhénen, Ove Strandberg, et al. The Network of Information, Architecture and Appli-
cations. Deliverable FP7-ICT-2009-5-257448-SAIL/D.B.1, SAIL project, July 2011. Available
online from http://www.sail-project.eu.

SAIL. Architectural Concepts of Connectivity Services. Deliverable FP7-1CT-2009-5-257448-
SAIL/D.C.1, SAIL project, July 2011. Available online from http://www.sail-project.eu.

Paul Murray (ed.). Cloud Networking Architecture Description. Deliverable FP7-ICT-2009-
5-257448-SAIL/D.D.1, SAIL project, July 2011. Available online from http://www.sail-
project.eu.

Guideline, Free Online Dictionary. http://www.thefreedictionary.com/guideline. Last
seen on 2011-07-25.

Principle, Wikipedia definition. http://en.wikipedia.org/wiki/Principle. Last seen on
2011-05.

Principle, Free Online Dictionary. http://www.thefreedictionary.com/principle. Last
seen on 2011-07.

The Open Group. TOGAF Version 9 — an Open Group Standard. http://pubs.opengroup.
org/architecture/togaf9-doc/arch/. Last seen on 2011-07-20.

Representational State Transfer, Wikipedia definition. http://en.wikipedia.org/wiki/
Representational_State_Transfer, May 2011. Last seen on 2011-07-25.

ISO/IEC 42010 Systems and software engineering — Recommended practice for architectural
description of software-intensive systems, July 2007.

R. W. Shirey. Internet Security Glossary, Version 2. ID draft-shirey-secgloss-v2-08.txt,
November 2006.

User Network Interface (UNI) 1.0 Signaling Specification, 2001.

Architecture principles: Creating the foundation for robust architecture. http://www.ibm.
com/developerworks/library/ar-archprinc), 2007. Last seen on 2011-07-25.

Microsoft Patterns & Practices Team. Microsoft Application Architecture Guide. Microsoft
Press, 2009.

B. Carpenter. Architectural Principles of the Internet. RFC 1958 (Informational), June 1996.
Updated by RFC 3439.

R. Bush and D. Meyer. Some Internet Architectural Guidelines and Philosophy. RFC 3439
(Informational), December 2002.

SAIL

Public 45

http://www.sail-project.eu/
http://www.thefreedictionary.com/guideline
http://en.wikipedia.org/wiki/Principle
http://www.thefreedictionary.com/principle
http://pubs.opengroup.org/architecture/togaf9-doc/arch/
http://pubs.opengroup.org/architecture/togaf9-doc/arch/
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://www.ibm.com/developerworks/library/ar-archprinc
http://www.ibm.com/developerworks/library/ar-archprinc

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

Date: July 29, 2011 Security: Public ‘\\
Status: Final Version Version: 1.0 S A {\L
[17] Future Internet Reference Architecture Group. http://ec.europa.eu/information_

[18]

[19]

society/activities/foi/research/fiarch/index_en.htm, 2011. Last seen on 2011-07-25.

Maria Angeles Callejo and Martina Zitterbart. Architectural Framework: new release and first
evaluation results. Deliverable FP7-ICT-2007-1-216041/D-2.3.0, 4WARD Project, January
2010. Available online from http://www.4ward-project.eu.

Jukka Salo et al. New Business Models and business dynamics of the future networks. Deliv-
erable FP7-ICT-2009-5-257448-SAIL/D.A.7, SAIL project, July 2011. Available online from
http://www.sail-project.eu.

Alberto Gonzalez (ed.). In-network management design. Deliverable FP7-ICT-2007-1-216041-
4WARD/D-4.3, 4AWARD project, May 2010. Available online from http://www.4ward-
project.eu.

Dominique Dudkowski, Marcus Brunner, Giorgio Nunzi, Chiara Mingardi, Chris Foley,
Miguel Ponce de Leon, Catalin Meirosu, and Susanne Engberg. Architectural principles and
elements of in-network management. In Mini-Conference Proceedings of the 11th IFIP/IEEE
International Symposium on Integrated Network Management (IM 2009), Long Island, NY,
USA, June 2009.

Dominique Dudkowski, Bioniko Tauhid, Giorgio Nunzi, and Marcus Brunner. A prototype for
in-network management in naas-enabled networks. In 12th IFIP/IEEE International Sympo-
sium on Integrated Network Management (IM’11), Dublin, Ireland, May 2011.

Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4). RFC 4271 (Draft
Standard), January 2006.

Geoff Huston. Analyzing the Internet’s BGP Routing Table. http://www.cs.columbia.edu/
~hgs/internet/bgp.txt. Last seen on 2011-07-25.

Thomas Edwall et al. Description of Project-wide Scenarios and Use Cases. Deliverable
FP7-ICT-2009-5-257448-SAIL/D.A.1, SAIL project, February 2011. Available online from
http://www.sail-project.eu.

OSI. List of Licenses ordered by Name. Last seen on 2011-07-25 at http://www.opensource.
org/licenses/alphabetical.

The GNU General Public License. http://www.gnu.org/licenses/licenses.html#GPL.
Last seen on 2011-07-25.

The Current State of FreeBSD and BSD Licenses. http://www.freebsd.org/doc/en_US.
I1S08859-1/articles/bsdl-gpl/article.html#CURRENT-BSDL. Last seen on 2011-07-25.

Frequently Asked Questions about the GNU Licenses. http://www.gnu.org/licenses/
gpl-faq.html. Last seen on 2011-07-25.

Open Source Initiative OSI — The BSD 3-Clause License. http://www.opensource.org/
licenses/BSD-3-Clausel Last seen on 2011-07-25.

Open Source Initiative OSI — The BSD 2-Clause License. http://www.opensource.org/
licenses/BSD-2-Clausel Last seen on 2011-07-25.

BSD Licenses at Wikipedia. http://en.wikipedia.org/wiki/BSD_licenses. Last seen on
2011-07-25.

46

Public SAIL

http://ec.europa.eu/information_society/activities/foi/research/fiarch/index_en.htm
http://ec.europa.eu/information_society/activities/foi/research/fiarch/index_en.htm
http://www.cs.columbia.edu/~hgs/internet/bgp.txt
http://www.cs.columbia.edu/~hgs/internet/bgp.txt
http://www.opensource.org/licenses/alphabetical
http://www.opensource.org/licenses/alphabetical
http://www.gnu.org/licenses/licenses.html#GPL
http://www.freebsd.org/doc/en_US.ISO8859-1/articles/bsdl-gpl/article.html#CURRENT-BSDL
http://www.freebsd.org/doc/en_US.ISO8859-1/articles/bsdl-gpl/article.html#CURRENT-BSDL
http://www.gnu.org/licenses/gpl-faq.html
http://www.gnu.org/licenses/gpl-faq.html
http://www.opensource.org/licenses/BSD-3-Clause
http://www.opensource.org/licenses/BSD-3-Clause
http://www.opensource.org/licenses/BSD-2-Clause
http://www.opensource.org/licenses/BSD-2-Clause

Document: FP7-ICT-2009-5-257448-SAIL/D-2.2

‘\\ Date: July 29, 2011 Security: Public
\ N Status: Final Version Version: 1.0

[33] Peter Schoo, Volker Fusenig, Victor Souza, Marcio Melo, Paul Murray, Hervé Debar, Houssem
Medhioub, and Djamal Zeghlache. Challenges for cloud networking security. In Proceedings of
the MON-AMI Conference, Santander, Spain, Sept 2010.

[34] C. Calude. A Dialogue on the Internet with Dr. Brian E. Carpenter, 2008.

SAIL Public 47

	List of Figures
	List of Acronyms
	Introduction
	Motivation and objectives
	Structure

	Glossary
	Guidelines
	General principles and guidelines
	Security Framework and Guidelines
	Objectives
	Approach
	Guidelines

	Network Management Framework and Guidelines
	Objectives
	Interrelations
	Guidelines

	Inter-provider Framework and Guidelines
	Objectives
	Guidelines

	Prototyping and Experimentation Framework and Guidelines
	Approach
	Objectives
	Principles
	Architectural Framework for Validation
	Guidelines on Validation Process and Framework
	Guidelines on Free and Open Source Software

	Migration and Interoperability Framework and Guidelines
	Technical challenges
	Business incentives and obstacles
	Guidelines

	Topics to be addressed
	SAIL Architecture
	Simplified Architecture
	Overview
	Interfaces

	Theme Interactions
	Security
	Inter-provider
	Management
	Migration

	Conclusion
	Bibliography

