
Objective FP7-ICT-2009-5-257448/D.B.4

Future Networks

Project 257448

“SAIL – Scalable and Adaptable Internet Solutions”

D.B.4
(D-3.4) Prototyping and Evaluation

Date of preparation: 2013-03-07 Revision: 1.1
Start date of Project: 2010-08-01 Duration: 2013-02-28
Project Coordinator: Thomas Edwall

Ericsson AB

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

Document Properties
Document Number: D.B.4
Document Title:

Prototyping and Evaluation

Document Responsible: Dirk Kutscher (NEC)
Document Editor: Petteri Pöyhönen (NSN)

Authors:

Bengt Ahlgren (SICS), Matteo D. Ambrosio (TI),
Elwyn Davies (TCD), Anders E. Eriksson (EAB),
Stephen Farrell (TCD), Claudio Imbrenda (NEC),
Bruno Kauffmann (FT), Dirk Kutscher (NEC),
Fabian Schneider (NEC), Anders Lindgren (SICS),
Ian Marsh (SICS), Luca Muscariello (FT),
Hugo Negrette (EAB), Börje Ohlman (EAB),
Jean-François Peltier (FT), Karl-Ake Persson (EAB),
Petteri Pöyhönen (NSN), Miguel Sosa (EAB),
Patrick Truong (FT), Janne Tuononen (NSN),
Vinicio Vercellone (TI)

Target Dissemination Level: PU
Status of the Document: Final Version
Version: 1.1

Production Properties:
Reviewers: Benoit Tremblay, Gerald Kunzmann (DOCOMO)

Document History:
Revision Date Issued by Description
1.0 2013-02-28 Petteri Pöyhönen First complete version
1.1 2013-03-07 Petteri Pöyhönen Small fixes and public

version

Disclaimer:
This document has been produced in the context of the SAIL Project. The research leading to these results has
received funding from the European Community’s Seventh Framework Programme (FP7/2010–2013) under grant
agreement n◦ 257448.
All information in this document is provided “as is” and no guarantee or warranty is given that the information
is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.
For the avoidance of all doubts, the European Commission has no liability in respect of this document, which is
merely representing the authors view.

SAIL Public i

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

Abstract:

This deliverable reports on the prototypes and testbeds that had been shown at a pub-
lic demonstration event on Future Media Distribution using Information Centric Networks:
http://www.sail-project.eu/future-media-distribution-information-centric-networks/.

Keywords:
Network of Information, NetInf, Information-Centric Networking, Internet, SAIL, Architecture, Proto-
types, Evaluation

SAIL Public ii

h

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

Executive Summary

NetInf is the approach to Information-Centric Networking developed by the SAIL project. This
deliverable is a so-called prototype deliverable and provides a report on the prototypes and testbeds
that had been shown at a public demonstration event on Future Media Distribution using Informa-
tion Centric Networks: http://www.sail-project.eu/future-media-distribution-information-centric-
networks/.
Based on the NetInf architecture and protocols, SAIL has developed several prototypes for in-

frastructure nodes (NetInf routers and caches) and applications such as content distribution and
information retrieval. SAIL has also developed a large-scale distributed testbed for NetInf that
connects several partners sites and hosts thousands of NetInf nodes.
These systems have been shown in several live demonstrations and simulations at the mentioned

public demonstration event. Regarding evaluating the system, SAIL focused on two main areas: 1)
system scalability with respect to routing and name resolution and 2) performance with respect to
data transport and caching.

SAIL Public iii

h

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

Contents

Executive Summary iii

1 Introduction 1

2 Live Event Prototypes 2
2.1 Network of Information (NetInf) Overview . 2
2.2 NetInf for Events with Large Crowds . 3

2.2.1 NetInf Demo Overview . 4
2.2.2 Physical Node Demo . 6

2.3 NetInf Multi-partner Testbed Configuration and Management 10
2.4 NetInf EwLC Emulation Demo Caching & Adhoc networking Benefits 13
2.5 NetInf Global Routing Using Hints . 17
2.6 NetInf Congestion Control Protocol . 19
2.7 Caching in a Network of Information (with visualization) 20

2.7.1 Principle . 20
2.7.2 Philosophy . 22
2.7.3 Visualisation . 24

2.8 NetInf: Using Delay- and Disruption-Tolerant Networking (DTN) with Nilib 25
2.9 GIN: A Global Information Network for NetInf . 29

2.9.1 Architecture . 30
2.9.2 Demo . 33

2.10 NetInf Open Source Software . 35

Appendices 38
Appendix A: Brochures . 38

List of Acronyms 60

List of Figures 62

Bibliography 64

SAIL Public 1

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

1 Introduction

The SAIL NetInf system for Information-Centric Networking provides a highly scalable network
architecture with particular support for robustness and reliability. NetInf is designed to enable
multi-technology/multi-domain interoperability and to facilitate initial deployment and migration
from today’s networks to ICN. This deliverable is a so-called prototype deliverable1, and it provides
a report on the prototypes and testbeds that had been shown at a public demonstration event on
Future Media Distribution using Information Centric Networks: http://www.sail-project.eu/future-
media-distribution-information-centric-networks/.
The first project deliverable D.B.1 [1] described NetInf in terms of an architecture framework

(based on a set of invariants) and architecture elements for naming, name resolution, search, routing
and forwarding, mobility, transport, caching, security, and APIs, which has been illustrated by a
set of application scenarios. It made concrete decisions on key topics for interoperability such as
naming and experimentation options for routing and forwarding.
We have since done prototyping and experimental activities for assessing design choices and for

further specifying details of the NetInf systems. The results of this work have been documented in
the project deliverable D.B.2 [2], which has formulated the architecture invariants more specifically
and which has advanced NetInf technologies such as routing and forwarding, transport protocols
and caching. D.B.2 also defines a set of preferred use scenarios that have been further developed
and investigated by the prototypes presented in this document.
The individual prototypes and their technical components as well as their evaluation have been

described in the project deliverable D.B.3 [3] that also provided a comprehensive description of the
overall NetInf architecture.

This deliverable is based on the NetInf architecture and protocols, SAIL has developed several
prototypes for infrastructure nodes (NetInf routers and caches) and applications such as content
distribution and information retrieval. SAIL has also developed a large-scale distributed testbed for
NetInf that connects several partners sites and hosts thousands of NetInf nodes.
These systems have been shown in several live demonstrations and simulations at the mentioned

public demonstration event. Regarding evaluating of the system, SAIL focused on two main areas:
1) system scalability with respect to routing and name resolution and 2) performance with respect
to data transport and caching.
This document is reproducing the material shown at the demonstration event in Chapter 2.

Appendix A provides the actual brochure published at the demonstration event.

1For prototype deliverables, the actual deliverable are the prototypes.

SAIL Public 1

h

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2 Live Event Prototypes

2.1 Network of Information (NetInf) Overview

Information-Centric Networking (ICN) is a promising approach for evolving the Internet towards
an infrastructure that can provide an optimal service for accessing named data objects – one of the
dominant applications today (Figure 2.1). In general, ICN is providing access to named data objects
as a first class networking primitive and is leveraging unique naming techniques and ubiquitous in-
network caching to provide more efficient and robust networking services than current approaches
allow.

Information-centric Network

Focus on
Accessing

named data objects
real world objects

Today’s Internet

Focus on
Conversations between Hosts

In today’s Internet,
accessing information is
the dominating use case!

In today’s Internet,
accessing information is
the dominating use case!

Figure 2.1: Vision: Moving towards ICN

The Scalable and Adaptive Internet Solutions (SAIL) project has been developing the NetInf
approach (Figure 2.2) that is aiming at a highly scalable network architecture with particular
support for robustness and reliability as well as at multi-technology/multi-domain interoperability.
SAIL NetInf is putting particular emphasis on enabling networks that go beyond current de-facto
architectures for broadband/mobile access and data center networks. While we want to support
those deployment scenarios and their corresponding business requirements, we also want networks
to go beyond inherited telco constraints and assumptions.
For example, ICN can be made to work with the existing network infrastructure, name resolution

and security infrastructure – but that does not mean that all ICN networks should depend on such
infrastructure. Instead, we want to leverage local, decentralised communication options to arrive at
a solution that is easy to deploy at small scale and is able to extend to global scale but still resilient
against network partitions, intermittent connectivity and potentially longer communication delays.
Likewise, ICN is often characterised as a generalised content distribution approach, but in fact, has
benefits beyond content distribution for example, better security properties through Named Data
Object (NDO) security as well as better performance and robustness through in-network caching
and localised transport strategies.
We believe that NetInf’s going beyond next-generation Content Delivery Network (CDN) ap-

proach will finally result in a network that better accommodates current mass-market applications
(for example for content distribution) and future mass-market applications such as smart-object
communications in constrained networks. Key NetInf elements have been published as specifica-
tions, such as the NetInf protocol specification [4] - a conceptual specification of a NetInf Node-

SAIL Public 2

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

ICN-DFZICN-DFZ

AA
BB CC DD

EE

FF

GG
HHII

JJ
KK

D
1

D
1 D

2
D
2

J
1
J
1

J
2
J
2

D2xD2x

Name Resolution ServiceName Resolution Service

ni://example.com/foo;YY
D
D2
D2x

ni://example.com/foo;YY
D
D2
D2x

Named object
ni://example.com/foo;YY

Figure 2.2: NetInf approach

to-Node communication protocol that includes an object model for NDOs, a detailed description
of the Convergence Layer approach, as well as the specification of HTTP and UDP Convergence
Layers. The NetInf protocol work was driven by the objective to build systems that actually work
in a variety of scenarios, and for that we have followed a prototyping-driven approach. This led to
a set of additional specifications such as the ni: naming format [5] and different Convergence Layer
specifications. In the following, we are presenting different prototypes and evaluation scenarios that
had been developed by the SAIL project, illustrating different aspects of the NetInf system.
NetInf approach shown in Figure 2.2 has the following main components:

• NetInf Naming: Identifying NDO and providing name-content binding validation and other
security features.

• NetInf Transport: Information-Centric internetwork, transport protocols and Convergence
Layer (CL) approach enabling migration and network diversity.

• Interdomain Communication: Name-based routing and name-resolution services.

2.2 NetInf for Events with Large Crowds

The Event with Large Crowds (EwLC) scenario has been chosen as a suitable scenario for demon-
strating the benefits of NetInf over previous networking architectures. This demo shows how dif-
ferent partner prototypes fit together and are integrated to create a consistent NetInf system for
the EwLC scenario, and then outline the plans for a final demo of this scenario at the end of the
project.
The EwLC scenario targets situations when large crowds come together for a limited duration of

time at some location due to a popular event occurring such as a sports event or outdoor festival.
When operators dimension deployments of cellular networks, they base the design on regular de-
mands and load on the network during peak hours. There is however a limit to how much capacity
can be allocated to a single location (in particular for radio communication where the available
frequency spectrum is a limiting factor), and operators do not want to spend more money on de-
ployments than is typically required. When large crowds gather in a relatively small area during a

SAIL Public 3

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

relatively short period of time (on the order of tens of minutes to hours), this creates a very high
load on the cellular network.
Common for all these scenarios is that they occur during events that gathers a large crowd

interested in accessing data from the network. This creates a demand on the network that is higher
than what the network infrastructure is dimensioned for, causing the user experience to deteriorate.
As the people in the crowd are there for the same event, they can be expected to have similar
interests that drive their data access patterns (e.g., at a football match, it is likely that most of
the crowd wants to view a replay of a goal). Thus, there is great potential for using NetInf in
this scenario as NDOs can be cached close to users, but also in the mobile nodes themselves to
serve other nearby mobile nodes, reducing the load of the network. Additionally, user generated
NDOs can be distributed either via infrastructure caches or via local peer-to-peer communication
techniques to minimize a mobile node’s outbound bandwidth consumption.
In this demo, we show an integration of multiple partner prototypes into a working proof-of-

concept EwLC system. In addition to the required NetInf infrastructure (routing, caching, and
name resolution), a NetInf system for Android devices has been implemented, and three end-user
applications are shown. These are collaborative web-browsing, photo sharing with a visual content
directory, and video streaming over the NetInf protocol.
In addition, there is a visualisation server that makes it easier to see what is happening in

the network. The demo configuration and a screenshot of the visualization tool can be found in
Figure 2.10.

2.2.1 NetInf Demo Overview

(a) EwLC environment

Alice is on her way
home from work,
browsing the web,
when…

… she
decides to to
see tonight's
game of her
favorite
football team

After the game she likes
to watch the after-game-
talkshow that some of
her friends are making
using their Android
phones and distributing
via the NetInf network

(b) Demo scenario

Figure 2.3: EwLC demo

Basic problem to be solved The common problem that we illustrate with the EwLC scenario
(Figure 2.3a) is when the wireless infrastructure can not support the communication needs of a
group of people. In certain situations, when the group wants to access the same set of content items
sharing them locally using NetInf can be a very powerful technique. Figure 2.3b shows the demo
scenario.

Commuter train The commuter train has a NetInf cache server that includes a Name Resolution
System (NRS) (Figure 2.4). It both contains pre-cached material and such that is being cached
from user traffic. Devices onboard the train can download via 3G (when available), get objects from
the cache and exchange objects directly via, e.g., Bluetooth, in a p2p fashion.

Stadium scenario The stadium often hosts events that gather large crowds. As people come there
for the same events, they have similar interests in the content they consume. They are likely to

SAIL Public 4

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

IO

NetInf
cache

IO

NetInf
cache

3G

WLAN

IO

NetInf

cache

Local cached copies are
found and used

Figure 2.4: Commuter train

request information about the game, share locally produced media content from the event, and
watch video streams from the event
The stadium has 3G coverage, and its infrastructure includes WiFi networks that are connected

to a local NetInf infrastructure of caches and NRS, helping to reduce the otherwise high load on
3G and WiFi infrastructure. Network load can be further reduced by sharing content over local
communication channels to people in adjacent parts of the stadium.

Let’s share this photo!

3G

WLAN IO

NetInf
cache

Local cached copies are
found and used

Figure 2.5: Stadion scenario

Visualization tool The visualization server stores and analyzes notifications related to NetInf
node signalling, and displays the signals in real-time. The sequence of signals can also be stepped
through in a non-realtime display mode. The visualization server provides a network perspective of
the signalling between the NetInf nodes, as opposed to a traditional protocol analyzer, which only
provides a link local view. The visualization server is useful both for debugging and demonstration
purposes.

(a) Demo configuration

IO
NetInf
router

IO
NetInf
router

IO
NetInf
routerNOTIFICATONS

VISUALIZATI
ON

SERVER

AO

A1

LO

NRS

GET
object ID

RESP 200
object ID

GET
object ID

RESP 200
object ID

PUBLISH
object ID

RESP

(b) Visualization tool

Figure 2.6: EwLC demo visualization

SAIL Public 5

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2.2.2 Physical Node Demo

2.2.2.1 Overview

To showcase some of the potential for NetInf in an event with large crowds, a proof-of-concept
system has been implemented with components from different partners. The demo setup is shown
in Figure 2.7, where both mobile clients and infrasturcture nodes are visible.

Q

IO
NetInf
router

IO
NetInf
router

IO
NetInf
router

Q

Figure 2.7: Physical Node Demo setup

In this setup, routing and on path caching are provided by NEC NetInf Router Platform (NNRP)
and Ericsson Erlang NetInf routers. The Erlang routers are able to do request aggregation which
is needed to avoid request storms towards the streaming node. This is especially important in flash
crowd scenarios. NNRP’s functionality is shown in Figure 2.8, where a local message processing is
illustrated to show what kind of processing is involved between input and output CLs.

Figure 2.8: NNRP message processing

The Name Resolution Service (NRS) is provided by the NiProxy implemented by NSN. The
NiProxy is also provides a storage service which allows clients to make a "Full PUT" which means
that in addition to register the NDO in the NRS with its metadata (including locators) the NDO
can also be explicitly cashed at the NiProxy. It also provides a search services by which NDOs
matching certain metadata attributes can be found.
The NetInf Android mobile clients are implemented by Ericsson and can connect to the NetInf

network via WiFi or 3G to retrieve or publish NDOs. They can also do this in a peer-to-peer fashion
by directly communicating with each other via Bluetooth. The Android devices implements a generic
Netinf service that provides an HTTP-based local API to applications which allows anyone to create
a NetInf-enabled Android App. Finally there is a visualization tool, implemented by Ericsson, which

SAIL Public 6

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

shows the signalling messages that are exchanged between the nodes in the demo.
Three example apps are shown in the demo web browsing, photo sharing and live streaming, we

describe them next.

2.2.2.2 Collaborative web browsing

When a web page is requested, the NiProxy is searched for an NDO corresponding to that page.
If found, the NDO is retrieved from appropriate locator (either NiProxy, NNRP cache, or over
Bluetooth from mobile peer. If not found, the web page is retrieved using legacy HTTP. An NDO
is then created and registered with the NiProxy for future requests User selects if retrieved content
should be shared at central repository and/or locally. Status indicators show what source a web
page is being retrieved from.

(a) Collaborative web browsing UI (b) Visual content directory UI

Figure 2.9: EwLC demo UIs

2.2.2.3 Local photo sharing and visual content directory

Problem: How does a user know what locally produced content is available? A user may for
example be interested in photos of a goal occurring at a certain point in time. Each user is assigned
a location in a stadium environment (seat number). Content that is shared by this user is tagged
with metadata indicating the location of the user.
Users publish photos as NDOs at the NiProxy. Visual content directory allows browsing of

available content over space and time. Use slider to show which locations published NDOs at
different times. Tap the seat location to retrieve NDO.

2.2.2.4 Streaming Demo

Overview and Features NetInf Live Streaming demo for the EwLC scenario has some key ben-
efits of NetInf over previous networking architectures. This demo will show some of the benefits
that makes NetInf an excellent platform for ad-hoc video distribution as well as an alternative
infrastructure for regular media broadcast. Some of the key features include:

• Any node can be the source of a live stream

SAIL Public 7

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

• No advance or special configuration of the network is needed as NetInf natively supports
multicast functionality through caching and request aggregation. Flash crowd problems are
thus avoided.

• Each viewer can independently choose to watch stream live, or from the beginning. Pausing/-
timeshifting the stream is also supported.

• Stream chunks can be retrieved from any node in a p2p fashion

Technical details Each stream is named by a stream identifier which is constructed by hashing the
stream name (e.g., a human readable filename). The chunk names are constructed by appending the
chunk number to stream id. The chunks are grouped into blocks that are signed. The block size is
recorded in the metadata of the NDO identified by the stream id (which also contains information
such as latest produced chunk). The meta data of each chunk NDO contains the signed block
digest and the digests of the other chunks in the block. This allows for verification of each chunk
independently immediately when received. For details, see [6].
For a user to connect to a stream:

1. Hash the name of the stream to get the stream NDO ID

2. Request the stream NDO

3. Decide where to start playing the stream.

• Live: chunk=current

• Start: chunk=1

• Starting from minute x: chunk=x*(chunk length/min)

4. Request subsequent chunks

Responding to a stream request:

1. When responding to a GET request for the stream NDO, that NDO MUST be marked as
non-cacheable.

2. When responding to a GET request for the stream-chunk NDO, that NDO MUST NOT be
marked as non-cacheable.

All nodes MUST understand the non-cacheable marking. There is a trade-off between the block
size and delay. The larger the block size the longer the delay before the block can be transmitted.
On the other hand the larger the block the less processing overhead (and delay) due to the signing
process.

Streaming scenario As described in the overall demo scenario Alice likes to watch the after-game-
talkshow that some of her friends are making from a bar nearby the stadium. Half a year ago it
was only Alice and a few friends that were watching the show, but now, after a big game there
can be up to 10 000 people watching the show while commuting home or from the couch in their
living rooms. Her friends are only using their Android phones to live stream the show. Thanks to
the NetInf enabled network the streaming scales transparently from 10 to 10 000 viewers without
putting any significant strain on the network.

SAIL Public 8

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

IO

NetInf
router

IO

NetInf
router

IO

NetInf
router

(a) Streaming scenario

Video
camera

Appli-
cation

Appli-
cation

NetInf

Chunk
generator

Pub.
 Video

Media
player

Get
video

Chunk
integratorPub.

chunks

Recording client Application Watching client Application

NNRP

NNRP

NNRP

NetInf

HTTP CL
Server

HTTP CL
Server

Chunk
objects

Chunk
objects

NetInf Routers

(b) NetInf live streaming

Figure 2.10: Streaming demo

NetInf live streaming in the demo The live streaming demo consists of two clients; i) recording
client and ii) watching client as shown in Figure 2.10b.
Recording client

• Video is captured and stored in an MPEG2 file

• Extract chunks from the file and publish in the local cache under the NDO name “VideoN-
ame"+“ChunkNumber"

• Update “latest chunk" info in the metadata of the main NDO name “VideoName"

Watching client

• The application sends a GET request for the main NDO name “VideoName" to its “local
NetInf node".

• The local NetInf node contacts the NRS to resolve the NDO name “VideoName" into a (set
of) locator(s). It then forwards the GET request towards the Recording client.

• The recording client returns the main NDO name “VideoName" including the latest recorded
chunk information.

• The watching client starts retrieving chunks by making GET requests for the NDO names
“VideoName"+“ChunkNumber"

• Chunk integrator reassembles chunks to media file

• Media player start reading media file and play out content

Named-data-integrity for NetInf Streaming The key issue is that the name-data-integrity is lost
with sequential chunk numbering. This can be solved by signing the chunks. Yet, thereby a new
issue arises: Signing individual chunks is computationally heavy. Alternative solutions are:

• The chunks are grouped into blocks that are signed, see Figure 2.11. The block size is recorded
in the metadata of the NDO identified by the stream id. The metadata of each chunk NDO
contains the signed block digest and the digests of the other chunks in the block. This allows for

SAIL Public 9

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

verification of each chunk independently immediately when received, e.g., D3 can be verified
by having the signed digest D1-8 and the digests D1-D2, D4-D8, D1-4 and D3-4. For details,
see [6].

• In the future in many scenarios signing individual chunks might be feasible (we like IETF
PPSP WG stays open for both these options).

• For applications that have their own security mechanisms at higher layers signing might not
be needed, e.g. like distribution of broadcast TV with dedicated set top boxes.

D1 D2 D3 D4 D5 D6 D7 D8

D1-2 D3-4 D5-6 D7-8

D1-4

D1-8

D5-8

Figure 2.11: Block signing process

2.3 NetInf Multi-partner Testbed Configuration and Management

The NetInf testbed runs on machines dedicated by the partners to execute a set of NetInf prototype
nodes. Targeting a large testbed running several hundreds of NetInf nodes, virtualizing nodes is the
only feasible option. Thus WPB created an lxc image that allows to run different configurations
of the NNRP along with a setup and configuration framework. Using this framework it is possible
to deploy 50-150 interconnected nodes on a new machine and integrating them into the existing
testbed. This should not take more than 5min. The framework allows easy updates to the installed
NNRP binaries.
At a high level the testbed consists of two tiers. The inner tier connects the different partner sites

over the Internet. Each sites is represented by one Gateway (GW) in this tier. The GWs primary
task is to connect the different partner sites. In the outer tier the partners can deploy their preferred
configuration and use the GW nodes to reach remote nodes and content. The suggested option is
to connect the virtualized nodes running in a machine via a dedicated Access Point (AP) to the
GW. That way it is easy to add both new NetInf testbed sites and more machines to a specific site.
To ensure reachability in the inner tier the testbed relies on the Routing Hints extension to NNRP
(which has been developed by SICS, see also Routing Hints poster for more info).
At the moment the testbed is configured with the EwLC emulation scenario in mind (see also

EwLC emulation demo poster). For this all the nodes are not only connected to the AP, but also
in adhoc groups with each other. To make the EwLC scenario more realistic traffic shaping is used
to emulate the bandwidth and delay of 3G and Adhoc WLAN networks. The current configuration
framework instantiates a configuration in which both the networks are used and the in-network
caching capabilities of NetInf are leveraged. Targeting the EwLC emulation we make the following
assumptions:

SAIL Public 10

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

• Objects are published only on nodes and locators are forwarded to APs which store them

• APs and GW for caching and routing (Naming scheme reflects organizational context)

• APs fetch the object when matching a locator and serve object, instead of only returning the
locator

• When a node receives a request it will first broadcast it in its Adhoc group (UDP, 1/2 sec
timeout), and if unsuccessful forward it to the AP.

• The AP in turn checks his caches and locators and if that fails uses the routing hints to
determine the next hop. This continues until the object is found.

To allow for centralized object publishing and inserting requests at dedicated nodes, the config-
uration framework also features a control network that can be extended across different machines
and sites using L2 tunnels (in our case SSH).

NECNEC

Internet

NNRP
GW

NNRP
AP1

NNRP
Nodes

NNRP
Nodes

ni.neclab.eu
10.1.1.???

ni.sics.se
10.1.2.???

ni.tilab.com
10.1.6.???

NNRP
Nodes

NNRP
AP2

NNRP
AP3

SICSSICS
NNRP

GW

NNRP
AP1

NNRP
Nodes

NNRP
Nodes

NNRP
AP2

TITI

NNRP
GW

NNRP
Nodes

NNRP
AP1

OrangeOrange

NNRP
GW

NNRP
Nodes

NNRP
AP1

ni.orange.fr
10.1.8.???

EABEAB

NNRP
GW

NNRP
Nodes

NNRP
AP1

tbd
10.1.4.???

TCDTCD

NNRP
GW

NNRP
Nodes

NNRP
AP1

ni.tcd.ie
10.1.3.???

You?You?

NNRP
GW

NNRP
Nodes

NNRP
AP1

ni.your.name
10.1.9.???

Message passing
using:

Locator
publishing,
Adhoc
broadcasting &
Last resort APs

Routing Hints
with fixed name
prefix to location
mappings

Figure 2.12: Testbed topology

Testbed Topology & Message passing mechanism Figure 2.12 shows the topology of the multi-
partner NetInf testbed.

• Each site is running virtual network and virtual nodes (Linux Container (LXC))

• NEC NetInf Router Platform (NNRP)

• SICS Router Module for NNRP

• Orange Transport Module for NNRP

Testbed Adaptation to Different Scenarios Support for different topologies, network constraints,
and node behavior. Event With Large Crowd Configuration used here:

• Objects are published on nodes only; Locators are forwarded to APs

• APs and GW for caching and routing (Naming scheme reflects organizational context)

• APs fetch the object when matching a locator and serve object, instead of only returning the
locator

SAIL Public 11

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

NNRP GW

NNRP
AP1

sail.nlehd.de, 195.37.154.77
gw.ni.neclab.eu, 10.1.1.1

Internet

ap1.ni.
neclab.eu

10.1.1.2

10.1.1.1

10.1.1.12

3G Net:
10.3.11/24
(10.3.11.Y)

NNRP
AP2

ap2.ni.
neclab.eu

10.1.1.3

10.1.1.13

Ctrl Net:
10.222/16

(10.222.10.Y)
.1

Ctrl Net:
10.222/16

(10.222.11.Y)
.1

.1

Adhoc:
10.23.11/24
(10.23.11.Y)

NNRP
Nodes
nodeY
Y=[2,50]

Ctrl Net:
10.222/16

(10.222.12.Y)
.1

.1

Adhoc:
10.23.12/24
(10.23.12.Y)

NNRP
Nodes
nodeY
Y=[2,50]

3G Net:
10.3.12/24
(10.3.12.Y)

Network Underlay
NetInf Overlay

Figure 2.13: Single Location Setup

Single Location Setup Figure 2.13 shows the testbed configuration at a single partner site. In
this setup, only GW needs Internet access, GW can reside on same machine as AP+Nodes and one
large L2 control network connected via tunnels (Secure SHell (SSH)).

NetInf GET Message Processing Stop if any of the steps yields the object:

• Node checks local caches

• Node broadcast request to adhoc network

• Forward request to AP, await response

– AP checks locator database

∗ On hit GET the object from locator, put in cache and serve back

– AP checks local caches

– AP uses routing hint to locate next hop

∗ Can be another local AP or the GW

Routing example GET for ni://ap3.ni.neclab.eu/sha-256;4âĂę.

• Prefix resolves to 10.1.1.4

• TI AP → nexthop is TI GW

SAIL Public 12

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

• TI GW → nexthop is NEC GW

• NEC GW → nexthop is NEC AP3

• NEC AP3 knows where to get the object local

Management Tools Scripts to start and stop virtual machines from single LXC image → many
nodes possible. Scripts to configure LXC, NNRPs and network on each machine. Framework to
publish and request objects and query cache status

2.4 NetInf EwLC Emulation Demo Caching & Adhoc networking
Benefits

Idea

• Emulating specific network setups to evaluate NetInf protocol performance in different load
scenarios

• Motivation: running real code in controlled environment for more meaningful and accurate
evaluation

• Event with Large Crowd: Many mobile NetInf nodes connected to wireless infrastructure
network and enabled to communicate locally (see Figure 2.14)

• Configuring different mobility patterns, publish/requests patterns, popularity distribution etc.

Figure 2.14: EwLC environment

Approach Use the NetInf Testbed as execution platform

• NNRPs in LXC virtual machines, 50+ nodes per machine

• Multiple physical machines to scale up network

• Testbed APs correspond to Base Station (BS), nodes to Mobile Node (MN), GW for connec-
tivity, Remote location nodes serve as origin servers

SAIL Public 13

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

Emulate two networks per node + Control to issue request

• 3G: connecting all nodes of a BS, traffic shaped to 7.2Mbps/150ms

• Adhoc: connecting 8-12 nodes directly, traffic shaped to 54Mbps/2ms

Script node behavior, request generation, communication link and storage constraints to ensure
reproducible experiments. Collect performance measurements for real-time and offline evaluation
(Not in demo) Mobility through changing Adhoc group memberships.
Lessons learned:

• NS3 is too slow to emulate Adhoc WLAN connectivity and/or mobility for 20+ nodes

• NNRP can process (relay) a request in less than 20ms

• LXC very light-weight and scalable

Scenario For the evaluation we assume the scenario of multiple soccer games being played at the
same time in multiple arenas. Each testbed AP corresponds to one arena, and the ICN nodes
attached to the AP correspond to users in that arena (app. 80 nodes per AP).
The users are not only interested in their local game, and especially in periods of “boring” gameplay

they might be interested in seeing what is going on in the other arenas.
Our scenario procedure is as follows:

1. A goal is scored in one of the arenas → 5 people in that arena publish an object

2. Five very curious people in the other arenas access one of these objects each. Then pause for
10 seconds.

3. The news spreads and some rounds of increasing numbers of users access decreasing numbers
of objects (some object are more popular than others. In our scenario we use

a) Access top 4 objects, with 4 requests per object per arena

b) Access top 3 objects, with 10 requests per object per arena

c) Access top 2 objects, with 50 requests per object per arena

Results To demonstrate the benefits of caching an adhoc communication we show CDFs (cumula-
tive distribution functions) of the response times to the request pattern described in the scenarios
subsection. In addition we show the network load in terms of number of requests.
In the first round of requests after a new goal (c.f., step 2 of scenario) all the requests are served

from the originator himself as only he has the content. This is shown in Figure 2.15. We expect
response times around 2.5 seconds for remote delivery (see blue area in plot). These 2.5 seconds
result for 3 contributing delays:

• 500ms waiting for responses from the broadcast to the adhoc domain.

• One second for the TCP handshake and slow start over a 150ms delay 3G network to the AP.

• Another second for the TCP handshake and slow start over a 150ms delay 3G network from
the remote AP to the originator node.

SAIL Public 14

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

Figure 2.15: Emulation results (left: CDF of response times, right: network load) from first round
of requests (see scenario description step 2). All requests are served from content
originator in remote stadium (blue area).

In the following round of requests (c.f., step 3a of scenario) all the AP have all the objects cached.
Thus, in Figure 2.16 the majority of requests is served from the caches of the local APs (yellow area
in plot). According to the same delays as in the first round, delivery from the AP is expected to
require 1.5 seconds (saving the TCP connect to the originator node). However some requesters are
lucky and already find the object in their local adhoc group (green area in plot).
The additional requests round fills the caches of the adhoc group nodes even more, so that in the

final round of requests (c.f., step 3c of scenario) is mainly served from the adhoc group nodes which
respond immediately. This is shown in Figure 2.17.
Overall we observe a significant offload potential through ICN in-network storage and NetInf local

communication. Mobility can be a further feature by disseminating locally generated or cached data
objects.

SAIL Public 15

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

Figure 2.16: Emulation results (left: CDF of response times, right: network load) from second round
of requests (see scenario description step 3.a). Most requests are served from the AP
cache (yellow area) and few are served locally from other nodes in the adhoc group
(green area). That downloaded the object before.

Figure 2.17: Emulation results (left: CDF of response times, right: network load) from last round
of requests (see scenario description step 3.c). Most requests are served locally from
other nodes in the adhoc group (green area)

SAIL Public 16

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2.5 NetInf Global Routing Using Hints

The global routing mechanism for the NetInf protocol makes use of two levels of aggregation in order
to achieve a high level of scalability. The mechanism is an adaptation of the Global Information
Network (GIN) Architecture [7] and Narayanan and Oran’s ideas [8] to the NetInf protocol. The
mechanism is mainly concerned with the global aspects of routing requests for NDOs towards the
corresponding publisher, i.e., routing in the NetInf default-free zone, comparable to the current
Internet’s BGP-routed infrastructure. Just like in the current Internet, edge domains can utilise
different routing schemes that are adapted to particular needs of the respective domain.

NDO aggregation Before going into the detailed design we briefly review the prerequisites. An
ICN needs in principle to keep track of all NDOs available in the global Internet, just like the current
Internet in principle needs to keep track of all hosts. Estimates of the number of objects range from
7 billion to one trillion (1012). To have margin for growth, we need to aim higher, at least to 1015.
The key to be able to globally route requests for this large number of NDOs is aggregation. We thus
introduce the notion of NDO aggregation, meaning that a set of NDOs are grouped together. For
routing and forwarding purposes, the NDOs in an aggregate are then treated the same. Such NDO
aggregates, with the same origin, occur naturally in reality, for instance, chunks of a video, photos
in a collection, individual objects on a web page and/or site, and so on. NDO aggregation increases
performance in that a name resolution cost need only be taken for the first NDO of the aggregate.
It likewise increases scalability in that routing information is only needed for the aggregate as a
whole. We use the authority part of the ni: URI [5] to name NDO aggregates.

Components The NetInf global routing scheme consists of:

• Routing hint lookup service: a global name resolution system, that maps domain names from
the ni: URI authority field into a set of routing hints (see example in Figure 2.18).

• NetInf BGP routing system: for the NetInf routers in the default- free zone.

• Routing hints: that aid global routing by providing aggregation for routing information.

• Forwarding tables: in each NetInf router that maps ni: URI and/or routing hints into the
address of the next hop to forward the request to. An example forwarding table is illustrated
in Figure 2.19.

Figure 2.18: Routing hint example

SAIL Public 17

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

Routing hint CL-specific next-hop

192.0.2.0 http://global.example.com/netinfproto/get

192.0.2.24 http://edge.example.com/netinfproto/get

10.1.10.1 http://local.example.com/netinfproto/get

Figure 2.19: Forwarding table example

NDO aggregation and routing hints

• Adaptation of the GIN Architecture and Narayanan and Oran’s ideas to the NetInf protocol.

• Aggregation of routing information key to scalability.

• Named Data Objects (NDOs) are grouped into aggregates.

• NDO aggregates are mapped to routing hints thought a lookup service (can be DNS).

• Multiple hints with priorities.

• Global routing only needed for lowest priority hints.

Forwarding process

• Check the object table (cached and permanently served NDOs)

• Check ni: name forwarding table; if match, forward to that next-hop

• If needed, perform lookup of routing hints

• Lookup all hints in routing hint forwarding table; if match, forward to next-hop of hint with
highest priority

Implementation

• NEC NetInf Router Plaftorm (NNRP)

• SICS Router Module for NNRP

J

Routing hint next-hop

D X

J1

Routing hint next-hop

Default J

X

Routing hint next-hop

D D

D2

Routing hint next-hop

D D

D2x D2x

Default D

ICN-DFZICN-DFZ

AA
BB CC DD

EE

FF

GG
HHII

JJ

KK

D1D1

D2D2

J1J1

J2J2

D2xD2x

Global Routing Hint
Lookup Service

Global Routing Hint
Lookup Service

abc.example.com
D,prio=1
D2,prio=2
D2x,prio=3

abc.example.com
D,prio=1
D2,prio=2
D2x,prio=3

Named object
ni://abc.example.com/…;XYZ

1
GET ni://abc.example.com/…;XYZ

1
GET ni://abc.example.com/…;XYZ

2
GET ni://abc.example.com/…;XYZ

2
GET ni://abc.example.com/…;XYZ

3
Resolving abc.example.com
to
(D,prio=1|D2,prio=2|D2x,prio=3)

3
Resolving abc.example.com
to
(D,prio=1|D2,prio=2|D2x,prio=3)

4
GET ni://abc.example.com/…;XYZ
Hint: (D,p=1|D2,p=2|D2x,p=3)

4
GET ni://abc.example.com/…;XYZ
Hint: (D,p=1|D2,p=2|D2x,p=3)

6
GET ni://abc.example.com/…;XYZ
Hint: : (D,p=1|D2,p=2|D2x,p=3)

6
GET ni://abc.example.com/…;XYZ
Hint: : (D,p=1|D2,p=2|D2x,p=3)

7
GET ni://abc.example.com/…;XYZ
Hint: : (D,p=1|D2,p=2|D2x,p=3)

7
GET ni://abc.example.com/…;XYZ
Hint: : (D,p=1|D2,p=2|D2x,p=3)

5
GET ni://abc.example.com/…;XYZ
Hint: (D,p=1|D2,p=2|D2x,p=3)

5
GET ni://abc.example.com/…;XYZ
Hint: (D,p=1|D2,p=2|D2x,p=3)

XX

D

Routing hint next-hop

D2 D2

Forwarding tables:

Figure 2.20: Routing hints usage example

SAIL Public 18

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

Figure 2.20 shows an example on how routing hints are used in NetInf global routing. The client
at the bottom left requests an NDO. The request is forwarded using default routing to the edge of
the default free zone (DFZ), where router J looks up routing hints with the result that three hints
with different priorities are added to the request. The request is then forwarded by looking up the
hints in the respective NetInf router’s forwarding tables until a node with the NDO is reached.

2.6 NetInf Congestion Control Protocol

Congestion control in ICN paradigm is still a challenge because there is no classical Internet Protocol
(IP) flow in such networks. We propose here a NetInf Congestion Control Protocol, which is based
on recent work [9, 10]. Its main aim is to keep the network stable by limiting the number of GET
requests issued by end-nodes, whilst still using most of the capacity. It is implemented as an NNRP
module and integrated in the testbed.
The protocol is based on the assumption that Application Data Unit (ADU) are published as

a set of small NDOs, which we call chunks. In particular, the chunks can be requested by any
node, and their integrity can be validated. The chunking operation is assumed to be performed
by the publisher, so that it can be adapted to the need of the applications (e.g. specific framing
for video application). We however expect that some open software will provide default chunking
for publishers who do not want to care about it. The benefit for doing chunking and congestion
control at the chunk level is that it allows to deal with small NDOs, and hence reduce the burden
of reassembling and fragmenting the NDOs at each CL link.
The module transforms an application GET request in a set of requests for the corresponding

NDOs, controlling their pace by adapting to loss events. These requests are then carried along the
network as any NetInf message. The module is also responsible for re-requesting unanswered GET
requests, hence performing error recovery function. It finally reassembles the set of NDOs into the
requested ADU and returns it to the application. Note that the module is agnostic about the CLs
which are used to fetch the NDOs. They may in particular perform also congestion control and
NDO reassembly. The module just assume that the CL is able to return the requested NDO.
Finally, as this protocol runs at the client side, and does not assume that all NDOs are fetched

from the same source, it can be used in a multipath context without need of adaptation, as we show
in a proof-of-concept experiment.
Key design choices:

• Receiver-based

• Object published as a set of small chunks

• Chunks are regular NDOs

• AIMD window controls the rate of GET messages

• Re-requests unanswered GET

POC for multipath:

• Developed as a NNRP module

• Round-robin forwarding based on a set of next hops

SAIL Public 19

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

(a) Chunking

DATA 1

1
Receive
r

Sende
r

w
size

Sent
Interest

s GET 11

DATA

22.5 3 DATA 3

3 4

2

GET 6

GET 55 6
GET 4

4

GET 2
GET 3

2 3

timer on 8

Receive
r

Sent
interest

s
Sender

w
siz
e
4 8 97 10

8
timer on 7

2 9 10

2.5
DATA 9

10 DATA 10

3 7
GET 7

7

GET 11

GET 8
118

(b) Protocol

Figure 2.21: Chunking and Congestion Control Protocol

Figure 2.22: NetInf Congestion Control Protocol Testbed

2.7 Caching in a Network of Information (with visualization)

2.7.1 Principle

Network caching of data retrieved from a server has been investigated both from a research and
industry perspective. From work in the early 90’s on web server caching, to more recent work
(Video on Demand (VoD) file distribution and 3G access networks) caching has become a viable
solution within the network to save resources. In this demonstration, we show how to cache objects
in an Information Centric Network. The significant difference between an ICN model and today’s
networks is that each web object has a unique identifier that is used to create, locate, distribute and
verify the object. The overwhelming advantage is that the traditional client-server model can be split
allowing objects to be moved, replicated, cached without an end-to- end connection. Additionally
metadata can be used to store attributes about the object. We leverage this architecture to design a
new type of cache management (or eviction) policy. We use the metadata field to store the hitrate of
each object and compare this field to the other cached items when deciding which object to replace
as caches fill. We compare our approach, called Forward Meta Data (FMD), to Least Recently
Used (LRU), Least Frequently Used (LFU) and random replacement policies.
We consider a hierarchy of caches in a tree structure with a source server at the top and clients

requesting NDOs at the leaves. The basic concept is to decouple the client-server approach by
allowing ’self-certifying’ objects to be be transported rather than the TCP bitstream for reliable
traffic or the UDP datagrams in unreliable transfers. Obviously, it is desirable to store highly popular
content in caches close to the clients and less popular NDOs higher up in the cache hierarchy in
order to reduce overall latency and load on the network. We assume that the caches have limited
storage space and an eviction policy is applied.

SAIL Public 20

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

(a) 3 sources measurements (b) Single source measurements

Figure 2.23: Measurements on the Congestion Control Protocol

We simulate a hierarchical infrastructure to determine which NDO’s to evict from a full cache
when a new NDO is visible to the cache. Two of the simplest and also most widely used policies are
LFU and LRU. The LFU selects the Information Object (IO) with the lowest hit rate while LRU
evicts the IO that has not been requested for the longest time.
A problem with LFU and LRU is that these policies tend to evict potentially popular content

before they have an opportunity to grow popular when storage space is small compared to the
amount of IOs visible to the cache. To mitigate this effect caches higher up in the hierarchy are
provided with larger storage space. This, however, works to a limited extent since the cache memory
becomes to large and latency for searching the cache becomes prohibitive. Ideally, the most popular
content should be stored in the cache closest to the client while the next popular content is stored
at the next level in the cache hierarchy etc. Furthermore, one could argue that once popular
content has been distributed out to the caches close to the edge of the network this content could
be expunged from caches higher up the hierarchy to provide storage space for new content. To
achieve this we propose to attach meta-information about the popularity of the IO when it is sent
from a source towards the requesting client. The meta-information is updated at each cache and
the updated meta-information is used by the re-placement function. We call our proposal FMD.
At each cache on the path to the client the meta data is examined and if the popularity of the IO
is higher than the least popular content in the cache the IO is replaced with the newly arrived IO.
We show this dynamic behavior through a poster explanation and a demonstration based on a

Java simulator.

Basic problem can be defined as follows:

• Investigate caching policies in a NetInf.

• In a system with many edge nodes & few storage servers.

– Form a tree-like structure with requesters at the leaves as shown in Figure 2.24.

– All items are stored in the server.

• Distribute copies of the items within the tree.

– Minimize the access time of the data items by reducing the load on the (few) servers and
on the bottleneck link.

• Classical problem is which items to evict as the caches fill.

SAIL Public 21

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

• Other works investigate the policies and system requirements.

Figure 2.24: Tree-like structure

2.7.2 Philosophy

Network of Information caching can be summarized as follows:

• The NetInf idea is to decouple self-contained objects from servers.

• Popular items should be cached as above.

• Important mechanism is that popular items should be replicated.

• Since objects are self-contained the access to each object needs to be kept.

• The metadata is one place to hold the number of accesses.

• We call this FMD.

In order to fulfill the demands of the bullet list above, we need to design an algorithm that will
work on a large scale and is more effective than comparing the popularity of each item in each
cache as it is migrated or moved. Even so, we are not guaranteed that the items with the highest
popularities that fit in a cache are closest, or even can be served faster than accessing the server,
this depends on the object size, search time in the cache, and congestion on the links. However,
what we can achieve, is fewer comparisons for each item at each cache, especially when determining
whether to store the item as well. This is conceptually simple, each items knows its popularity by
leveraging the meta-data concept developed within SAIL.

The FMD algorithm can be stated as follows:

• Requesters at leaves request an object.

• A search is conducted up the tree.

• If the item is found its access count is updated by one.

• On delivery to the client its access count is compared to the lowest hit rate in the cache.

SAIL Public 22

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

• If its hit rate is higher than the lowest hit rate, it replaces the cached item.

• Repeated for each cache down the tree.

Simulation/visualization environment A custom C++/Processing environment has been imple-
mented supporting five different cache management algorithms: LRU, LFU, Random (RND), Least
Requested Rate (LRR) and our FMD (forward meta data) approach. We have a C++ standalone
simulator for larger scale simulations and a visualization tool, built on the processing language to
show how items are stored and evicted over time, this is shown in Figure 2.26. Items to be stored
follow two different popularity distributions:

• A theoretical Zipf’s law z(k;α) = 1/kα

• Trace driven from Orange’s 3G mobile data collection

Results Figure 2.25 shows the average number of hops for cache sizes (relative to document size)
and the effect of the distribution of the popularity (α). Respectively Figure 2.26 shows average rank
of the documents in memory at each level (100,000 docs, 100 cache size, a very small cache compared
to the total number of documents. We will see other permutations for video files below from Orange
Labs.), lower numbers indicate how the most popular items are placed “more importantly” in the
caches.

10
−4

10
−3

10
−2

10
−1

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Relative cache size (log−scale)

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

5 level cache hierarchy (Alpha=1.000000)

LRU
LFU
RND
FMD

Figure 2.25: Popularity distribution

LFU LRU RND FMD

Level1 43428 98729 75171 183

Level2 62765 98357 95019 164

Level3 75756 84124 83547 145

Level4 84159 80345 80459 80

Figure 2.26: Document ranking

SAIL Public 23

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2.7.3 Visualisation

A visualization of the hierarchical caching process is shown in Figure 2.27. The visualization takes

Figure 2.27: Cache hierarchy and occupancy (top), Orange networks trace file (bottom)

a request from either the Zipf-law distributed data or a request from the Orange trace file and
allocates it one by one to one of the bottom caches (this could be a 3G base station). We could
have looked in the trace file and could have estimated which requests were going to each, but did
not, we simply allocated a request to each base station in turn. In a Internet scenario each request
could be a DSLAM. If the item is in the cache it is served back to the requester. If not, the next
cache up the tree (an operator cache for example) is searched, again if found it is served back down
the tree. The process continues up the tree until the item is found or retrieved from the original
server.
The lines show how the caches fill from an “empty” system, but over time only the popular items

will be shown (Facebook, YouTube and Orange specific items in this case). Moving the mouse over
will show which items are in each cache. Also we can see whether it is beneficial to store one large
item or many small ones of the same size. This is more difficult to see in a pure simulation, we see
only the hitrates per item per cache, not necessarily tradeoffs.

A realistic (video) example In June 2011 Cisco reported Internet video is now 40 percent of
consumer Internet traffic, and will reach 62 percent by the end of 2015, not including the amount of
video exchanged through Peer-to-Peer (P2P) file sharing [11]. The sum of all forms of video (TV,
VoD, Internet, and P2P) will continue to be approximately 90 percent of global consumer traffic by
2015.
Given a sample network with 100 pools of Digital Subscriber Line Access Multiplexer (DSLAM)

equipment that in turn are connected by 10 Broadband Remote Access Servers (BRAS) that con-
nects to the root router. For simplicity all routers are equipped with the same amount of cache
memory. Orange Labs reports video accesses summarized in table 2.7.3. One of the traces in the
report describes accesses to a mixture of movies and trailers during an 8 day period. The aver-
age content size in this trace is 703 Mbytes which with a 360 Gbyte cache corresponds to a cache
capacity of 512 items.

Duration 8 days
Requests 29,707 5,199 clients 5.7 reqs/client
Catalogue 3,518 items 2,473 GB 703 MB/item

With these parameters as input to the model proposed in D.B.2 and published in the ICN Sigcomm
workshop “On the Effects of Caching in Access Aggregation Networks” [12] we calculate a hit rate

SAIL Public 24

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

of 45% at the routers closest to the terminals. At the next level, the hit rate will be 26% and at
the top 22%. From the graphs of the Orange report a simulated LRU cache of the same size at
the first level shows a better than 60% hit rate on real data. These percentages are conservative
as our model assumes accesses to be independent and hence more spread out than accesses which
are correlated in both space and time. The cache model does not take correlations into account
and real hit rates will be higher. The results (hit rates) of the calculations are summarized for five
different sizes of caches below.

Level 128GB 256GB 360GB 512GB 768GB
root 0.130 0.184 0.218 0.260 0.323
mid 0.157 0.223 0.264 0.315 0.386
leaf 0.243 0.376 0.448 0.523 0.606
aggr. 0.444 0.604 0.683 0.758 0.836

2.7.3.1 Further considerations

An important question to consider is if flash memory will provide enough capacity to satisfy all
hits. For reference we have picked a standard PCI-Express card with inexpensive flash memory
that costs 700 EUR. It provides for 540 Mbytes/s of sustained read capacity. From the trace we
can deduce an average VoD rate of 30 Mbyte/s (240 Mbit/s) of which 13.5 Mbyte/s should be read
from our cache. In our experience, peak VoD load can be as much as 5 times the average load. In
this case there is sufficient capacity to satisfy the demand. At the next level, 44 Mbyte/s will have
to be read from the cache (remember to multiply by 10 because we are aggregating 10 subtrees).
There is still plenty of capacity. Similarly, at the root level we must read data from the cache at an
average rate of 267 Mbyte/s. This is possible, but if we expect peak load to be as much as 5 times
the average load we need to use flash memory with higher read performance. Such memory exists
and considering that this must be a rather high end router anyways this additional cost can likely
be motivated. Consequently, introducing the comparatively small caches mentioned above should
already today save some 27% of all consumer Internet traffic and extend to 42% savings by the end
of 2015.

Other Observations Requests will be Zipf distributed using α = 0.7. The table shows the hit
rate of individual levels for a very deep tree network of 10 levels and cache sizes corresponding to
0.1% of the catalogue1. We note that the first level (leaf) cache is of highest importance. Caches
at higher levels can still contribute to the aggregate cache effect but only to a much lesser extent
as it is not additive.
Thus, when designing future in-network caching architectures one should consider using either

larger caches at higher levels or to make groups of caches collaborate to create a larger virtual cache
(paying the internal communication costs but increasing content availability). This holds for the
whole parameter range but the relative performance of level 1 decreases with catalogue size. This
is intuitive since for very large catalogue sizes each level in the cache will store very popular items
and will have relevance on performance.

2.8 NetInf: Using Delay- and Disruption-Tolerant
Networking (DTN) with Nilib

NetInf DTN Convergence Layer and DTN↔HTTP Gateway The NetInf architecture is designed
to allow NDOs to be transported across paths that span multiple network domains. This work
demonstrates NetInf operating in a DTN domain and connecting to the Internet.

SAIL Public 25

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

Transport of NetInf requests and responses in the DTN domain uses a CL that carries NetInf
messages in bundles using the bundle protocol [13]. The DTN CL integrates with the HTTP (and
UDP) CLs specified in draft-kutscher-icnrg-netinf-protocol [4].
Code for the DTN CL is available in Nilib with C and Python interfaces. The Nilib code uses

the DTN2 Open Source Software reference implementation to provide the bundle protocol interface.
NetInf messages use bundle protocol Bundle Protocol Query (BPQ) and Metadata blocks to carry
the affiliated data for NDOs.
A typical interdomain deployment scenario using NetInf Hypertext Transfer Protocol (HTTP)

and DTN CLs is shown in Figure 2.28.

Figure 2.28: DTN scenario

NetInf ICN Device To demonstrate the DTN CL, TCD have developed a NetInf Device. This can
instantiated in a tablet or netbook-style computer communicating with the aim of using ICN over
DTN as its sole communication mechanism. The overall archicture of the NetInf device is shown in
Figure 2.29. The primary components which are available as Open Source Software are:

• DTN2

• NetInf Nilib

• FUSE userspace file system

Figure 2.29: NetInf ICN device

SAIL Public 26

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

NiLib Python The NetInf Device relies on the Python implementation of the NetInf protocol in
Nilib. The Python implementation provides

• NetInf HTTP and DTN CLs with GET forwarding

• PUBLISH, SEARCH operations intra- and inter-domain

• Using the filesystem for NDO content storage

• Using either filesystem or REDIS “NOSQL" DB for NDO meta-data

• Command line clients to initiate NetInf operations

• Apache module plug-in (via WSGI) or standalone Python for HTTP server

• DTN↔HTTP Gateway

• Running on tcd.netinf.eu SAIL testbed

DTN in use: SAIL Summer 2011 Trial - Padjelanta in Arctic Sweden - TCD and SICS The
goals of this trial were as follows:

• to deploy hardware and software using the DTN bundle protocol for communication that was
originally developed for the N4C project and improved for this trial,

• to provide demonstrations of applications including Twitter, Facebook, and email transported
over DTN for reindeer herders operating in the area

• to make initial experiments with some new additions to DTN bundle protocol that support
ICN over DTN using the Bundle Ptotocol Query extension block described in draft-irtf-dtnrg-
bpq [14]

Figure 2.30 shows the network assembled for the trial which used a combination of long range but
low bandwidth wireless relays and carriage of DTN bundles in storage using the helicopters that
provide service to the semi-nomadic reindeer herders of Padjelanta during the summer months. The
figure also includes images of work in progress during the trial including the solar powered ’village
router’ that acted as a ’post office’ for the data being sent to and from the remote part of Padjelanta
that is over 50km from roads, mains power supply and permanent communications infrastructure.

The NetInf DTN Convergence Layer The NetInf Protocol [4] adopts a CL architecture that
allows NDOs to be transported between pairs of nodes using a CL protocol that is chosen for
the nodes’ network domain. The NetInf protocol is well-suited for moving NDOs across disparate
domains using gateways at the domain boundaries where they choose a CL protocol for the next
transport hop: an incoming request using (say) the HTTP convergence layer in the well-connected
Internet could be forwarded into a domain where DTN is appropriate. The work represented by this
demonstration shows how a NetInf CL can be implemented on top of the DTN Bundle Protocol (BP)
using the Bundle Protocol Query Extension Block (BPQ block) developed during the SAIL project
to carry the NetInf specific information [14] in conjunction with Metadata Extension blocks. The
DTN architecture supported by the BP [15] is described as a ’store, carry and forward’ so that
all DTN nodes already support a cache for bundles that are in process of forwarding by the BP.
Unlike conventional routers, these copies are not necessarily transient but may be held for extended
periods of time to allow for the delays and disruptions foreseen in a DTN environment. During
the SAIL project we have added functionality to the DTN2 Bundle Protocol Agent (BPA) daemon

SAIL Public 27

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

Network Diagram

(a) Trial scenario

Work
in
progress

NDO
(bundle)
support

(b) Trial work

Figure 2.30: Network diagram of the “summer trial"

(’dtnd’) that uses the information in the BPQ block of bundles carrying NetInf requests to either
’publish’ an NDO by retaining the content in its cache or create a response to a ’get’ request from
this cache when the NDO name matches with the NetInf request parameter.

HTTP↔DTN CL Gateway In addition to the HTTP CL components in the NetInf Nilib OSS,
the repository now includes extensions to the standalone NetInf server that accept NetInf protocol
messages carried over the DTN CL together with extended applications that can select the CL to
use according to the format of locator hints provided.

NetInf DTN Device and FUSE NetInf Cache Access Component Computers used in the demon-
stration as DTN nodes are setup to manage external data access as far as possible using only NetInf
access over the DTN BP. NDOs cached by the DTN BPA (dtnd) on these nodes can be read
using their ni Uniform Resource Identifiers (URIs) as file names through a FUSE filesystem. Local
applications can write files into this filing system which will be automatically published as they
are completed (’closed’) and will then be accessible either via the correct ni URI name or the local
name used when they were created.

NetInf NiLib Python Performance Test Harness Nilib2 is a set of open-source (Apache licensed)
implementations of the NetInf Protocol developed as part of the SAIL project with various language
bindings including C, PHP, Python, Ruby and Java. We use the Python client and Apache server
implementation for this, and are developing a set of tools that will enable comparisons between
NetInf protocol implementations and network designs, but can also be used to compare different
ICN approaches. The basic approach is to have a standard corpus3 and to develop tooling and
measurements to enable the above comparisons to be made and to be independently replicated. We
plan to continue this work within the IRTF ICN research group. We will demonstrate and discuss
this early-stage work.

2http://sourceforge.net/projects/netinf/
3http://www.soschildrensvillages.org.uk/about-our-charity/archive/2008/10/2008-wikipedia-for-schools

SAIL Public 28

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2.9 GIN: A Global Information Network for NetInf

GIN is a hybrid architecture able to support both dissemination and conversational communication
models. It uses a stateless packet-based forwarding protocol, called Global Information Network
Protocol (GINP). GIN aims to interconnect NDOs over heterogeneous L3/L2 underlayers, in the
global network, by means of an integrated name-based resolution and routing mechanism. Data are
routed by names into the GIN network on a double path: the resolution path is used to route initial
GET requests to one or more destinations through a chain of Dictionary nodes integrated in the
network infrastructure and arranged according to some hierarchical scheme embedding topological
properties (e.g., content locality, locality of resolutions and routing paths), such as the Multilevel
DHT (MDHT) architecture [5]. Each object request initiates a direct communication session be-
tween the requesting entity and the object source(s). Data packets in the communication sessions
are routed on the shortest path with fast lookups in the node Next Hop Table (NHT). Figure 2.31
provides a view of the integrated name resolution and forwarding process in a GIN node.

Dictionary

If-1

If-2

If-3

If-4

If-5

If-6

If-7

If-8

L3/L2
MDHT

OK

OK

NO

NO

GINP* dataGINP* dataL3/L2

Discard

GINP
Name Resolution and Forwarding

IN

OUT

GINP provides
Resolution&Routing

at the Name Layer

GINPdata

Resolution
Path

~5% Traffic

Fast
Path

~95% Traffic

NO

OK: a match is found
NO: no match

OK

GINPdata L3/L2

Next Hop
Table

Figure 2.31: GIN node

Telecom Italia has developed a proof-of-concept prototype of a GIN infrastructure node. The
current GIN demo prototype provides the following features and services:

• name based routing and forwarding over heterogeneous networks (IPv4, IPv6, ETH);

• integrated name resolution by means of a distributed MDHT dictionary;

• in-network registration and storage of named objects;

• multicast ping of named objects (called gping);

• end-to-end receiver-based multipath retrieval of named objects;

• support for search of data objects by keywords and names by means of a simple search engine.

The GIN node, developed on FreeBSD, consists of two subsystems (Figure 2.32): the GIN Switch
and the GIN Dictionary.
The GIN Switch is implemented with a multithreaded program in C language. In the current

software release, a set of line commands is provided to manage and configure a GIN node. In
particular, it is possible: to enable GINP over Ethernet, IPv4 and IPv6; to add, delete, print GINP
static routes; to shape GIN interfaces, to print or reset GIN interface counters; etc.

SAIL Public 29

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

The GIN Dictionary is implemented in PHP language and runs over an Apache HTTP server
providing proxy services. The GIN Dictionary is composed of a Dictionary DB, holding bindings
for registered object IDs, and three main modules:

• the "Resolver" module handles resolutions for GINP packets and multicast GIN echo requests
(called gpings).

• the "PUT" module implements the registration protocol (client and server side).

• the "GET" module implements reliable end-to-end multisource retrieval protocol (client and
server side).

GIN
ETH-IF

GIN
ETH-IF

GIN
ETH-IF

GIN
IPv4-IF

GIN
IPv6-IF

Forwarding Engine

NHT

Switch
Controller

RM
Routing
 Module

GIN Switch
GIN Internal-IF

PUT ResolverGET

App
App
App/Obj

Dictionary
DB

GIN
Dictionary

App
App
App/Obj

App
App
App/Obj

GPING

Figure 2.32: GIN prototype architecture

A network testbed of virtual GIN prototype nodes has been setup on a VMware platform. The
testbed provides access for GIN services to legacy IP clients from Internet, by means of a web server
configured over each GIN node. In the testbed, several GIN nodes are interconnected through dif-
ferent underlayers (IPv4, IPv6 and Ethernet) and no IP connectivity is provided end-to-end. GINP
packets flow seamlessly over different underlayers. GINP provides the common network communi-
cation level. Client data objects can be stored in GIN access nodes, and near object copies can be
retrieved and gpinged from the GIN access nodes, showing locality and anycast behavior. Current
prototype software and documentation have been publicly released and are available on GIN web
site http://gin.ngnet.it. Future work comprises several activities, including implementation of a
GIN client, demonstration of mobility and real-time traffic support, implementation of dynamic
name-based routing and MDHT, evaluation of a possible Software Defined Networking (SDN) ap-
proach (with the GIN Switch implemented in the data plane and the GIN Dictionary in the control
plane).

2.9.1 Architecture

GIN view

SAIL Public 30

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

Legacy Internet IPv4

gin209

gin210 gin211 gin212 gin213

gin208

gin214 gin215

192.168.10.0/29 2001:6b8:80:1/64

19
2.

16
8.

10
.8

/2
9

2001:6b
8:80:2/64

.10 ::3

::4.11.4 .5

.3

::4 ::5

::3

IPv6IPv4

ETHERNET

Ipv6IPv4

MDHT Network /ti/gin_nw_A MDHT Network /ti/gin_nw_B

00:50:56:89:00:5f 00:50:56:89:00:29

K Q

D-G H-L M-R S-Z

A-C A-E

F-O P-Z

Figure 2.33: GIN testbed setup

• GIN is a hybrid networking architecture for ICN.

GIN supports both host-centric and information-centric communications.

• GIN interconnects Information Objects, addressed by user-level names.

GIN supports almost any user-level naming scheme (Internet URIs, NetInf, DONA, CCN,
etc.).

• GIN implements a packet-based Name Networking Layer.

GIN forwards data by name in the global Internet, in packets over L2/L3 heterogeneous
sublayers.

GIN Protocol packets are encapsulated directly in the L3/L2 frames.

• GIN adopts end-to-end transport services.

Any nearby copy of a named Information Object can be used for direct download.

Object copies are registered in a Network-distributed Dictionary.

• GIN integrates innovation as it appears in the overlays.

Services can be added to an open and flexible SDN network platform equipped with
storage and processing.

GIN node A Control Plane provides local and global resolution and routing and support for
network services (caching, storage, multicast, mobility, etc.). A Data Plane provides fast forwarding
on shortest paths with ID switching.

GIN Architecture Overview The GIN network architecture is shown in Figure 2.34. At the core
of the architecture is a Name-based Networking Layer. The foundation of the Name Layer is GINP,
the core protocol used to connect named objects over GIN. GINP is a stateless delivery protocol
similar to IP. Information Objects (GINP endpoints) are identified by means of ID stacks. GINP
packets are routed by object IDs though the network. GINP is the unifying name networking layer
over heterogeneous L3 or L2 networks. The PUT protocol is used as a signaling protocol between
clients and nodes in order to register/update/delete binding information into the GIN Dictionary
(i.e., the GIN distributed Name Resolution Database). The GET protocols are request/response
protocols, used by the clients to ask objects by name to the network. The MPGET (MultiPath
GET) protocol is a multisource retrieval protocol.

SAIL Public 31

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

Name Layer

Information Object Layer

Network IOs

Dictionary

MDHT

Storage
& Cache

L3/L2
Routing &
Switching

Table

Next Hop
Table

 Address Layer

PHY

IPv4

DLETH OtherMPLS BTH

GIN Protocol

User IOs

IPv6

Storage
Engine

Routing
Engine

IO
Manager

Network
Data Structures

MPGET
Protocol

RTGET
Protocol

…

Caching
Engine

Resolution
Engine

Multicast
Engine

AppAppApp
AppAppAppAppAppObj

AppAppAppAppAppObj

PUT

Figure 2.34: Protocol stack of the GIN Architecture

Name resolution and forwarding In GIN, name resolution and forwarding are two distinct but
strictly integrated processes. They use different data structures and provide two distinct paths for
delivering data and control packets (Figure 2.35).
GIN Resolution Path

• In the Dictionary, Object IDs are mapped to network IDs

• Object IDs are registered by clients with the GIN registration protocol (PUT)

• MDHT maps ranges of Object Ids to next hop Dictionaries if no resolution is locally available

GIN Fast Path

• In the NHT, Network IDs are mapped to L3/L2 next hop information

• Network IDs are advertised in traditional intra/inter-domain routing protocols (e.g., ISIS and
BGP)

• Most of the GIN traffic is routed over the Fast Path by means of ID switching

GIN Fast Forwarding Path

Dictionary

Object.IDNetwork.ID

Next Hop Table (NHT)

Network.IDNextHop.INFO
GET

Object.ID Next Hop
NodeGET

Object.ID

Network.ID

push

GET

Object.ID

GIN Resolution Path

Dictionary

Object.IDNetwork.ID

Next Hop Table (NHT)

Network.IDNextHop.INFO

Next Hop
NodeGET

Object.ID

Network.ID

GET

Object.ID

Network.ID

Master Object LabelTag

Generic ID Structure

2B mn

size=n+m+2 AS_ID Node_IDTag=x

NW_ID Structure (Network ID example)

4B 4B2B
size=10 Obj_Master_ID Obj_Label_IDTag=y

IO_ID16 Structure (Object ID example)

6B 8B2B
size=16

Figure 2.35: GIN forwarding and resolution

SAIL Public 32

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2.9.2 Demo

Prototype architecture The GIN prototype is licensed as open software, for demo and testing
purposes under Apache License 2.0, over FreeBSD 8.2. The Forwarding system has been written in
C language; the Dictionary system has been developed in PHP language.

Testbed setup An example GIN testbed has been set up (Figure 2.33): GIN nodes are intercon-
nected by means of heterogeneous sublayers: IPv4, IPv6, Ethernet. Two double-level Multilevel
Distributed Hash Table (DHT) Domains (A and B) are statically configured and provide a dis-
tributed Name Resolution System in each network domain .

ICN services on the GIN testbed The GIN prototype testbed provides fundamental ICN services
to legacy IP clients by means of GIN proxy nodes.
Registration and Upload (Figure 2.36)

• Client Q uploads object /Q/X to Access Node gin215

• Object /Q/X is registered in MDHT (locally and on another upper level node) and in the
Search Engine DB

Legacy Internet IPv4

gin209

gin210 gin211 gin212 gin213

gin208

gin214 gin215

ETHERNET

Ipv6IPv4

MDHT Network /ti/gin_nw_A MDHT Network /ti/gin_nw_B

/Q/XLocal

K
/Q/X/Q/X

/Q/X/Q/X

Q

/Q/Xgin215

Registration and Upload

Search
DB

/Q/X info IPv6IPv4

Figure 2.36: Registration and upload

Resolution (Figure 2.37)

• Client K sends a GET request for /Q/X to access node gin211

• Node gin211 sends a GPING request for /Q/X and receives a GPING Reply from gin215

Retrieval (Figure 2.38)

• Object /Q/X is downloaded from node gin215, cached on gin211 and registered in network A
and delivered to the requester

• Following requests for the same object in network A will be satisfied locally

SAIL Public 33

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

Legacy Internet IPv4

gin209

gin210 gin211 gin212 gin213

gin208

gin214 gin215

IPv6IPv4

ETHERNET

Ipv6IPv4

MDHT Network /ti/gin_nw_A MDHT Network /ti/gin_nw_B

K

/Q/XLocal

/Q/X/Q/X

/Q/X/Q/X

Q

/Q/Xgin215

/Q/X?

MDHT default to nw_B

/Q/Xgin211

Figure 2.37: Resolution

Legacy Internet IPv4

gin209

gin210 gin211 gin212 gin213

gin208

gin214 gin215

IPv6IPv4

ETHERNET

Ipv6IPv4

MDHT Network /ti/gin_nw_A MDHT Network /ti/gin_nw_B

K

/Q/XLocal

/Q/X/Q/X

/Q/X/Q/X

Q

/Q/Xgin215

/Q/X?

/Q/Xgin211

/Q/X/Q/X

/Q/X/Q/X

Figure 2.38: Retrieval

An experiment: multisource retrieval performance gains The GIN testbed has been used for a
preliminary assessment of the GIN multisource retrieval protocol (MPGET).
Experimental setup (Figure 2.39)

• Node gin208 is downloading object /Q/X from 1 to 4 sources in parallel

• Each source is shaped at 1000 pps in upstream

• Ethernet link to gin208 is throttled at X pps

• A 50 MB file has been retrieved from 1-4 sources in parallel

• The download times and bandwidths are illustrated in the charts (Figure 2.40, Figure 2.41,
Figure 2.42)

gin209

gin210 gin211

gin212 gin213

gin208

192.168.10.0/29

2001:6b8:80:1/64

ETHERNET

Ipv6

IPv4

/Q/X/Q/X/Q/X/Q/X

/Q/X/Q/X /Q/X/Q/X

5005000 pps

1 Kpps1 Kpps

1 Kpps1 Kpps

Figure 2.39: Experiment setup

Figure 2.40: Download times as a function of
the bottleneck rate and number of
sources

SAIL Public 34

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

Figure 2.41: Download bandwidth as a function of
the bottleneck rate

Figure 2.42: Bandwidth utilization on the down-
load link

2.10 NetInf Open Source Software

SAIL has developed a rich set of prototype implementations of the NetInf protocol and corresponding
applications. A significant fraction of these implementations have been released under Open Source
Software licenses and are used by the ICN community for experiments and new research activities.

NetInf Software on SourceForge The SAIL project has released an open-source (subject to the
Apache v.2 license) set of tools for NetInf. These implement various aspects of the NetInf protocol
in different languages. At the time of writing, there are C, Python, PHP: Ruby, Clojure and Java
implementations with the Python, Puby and PHP code having seen the most development so far.

Figure 2.43: NetInf software

OpenNetInf The OpenNetInf prototype building on and extending earlier work from the 4WARD
project [16]. The OpenNetInf implementation is a proof-of-concept implementation of the major
NetInf elements, including the NetInf API, inter-NetInf-node interface, information model, naming
concepts, security concepts, name resolution, caching, and data transfer. The goal is to evaluate the
major NetInf design decisions and the overall NetInf architecture in practice. OpenNetInf contains a

SAIL Public 35

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

hierarchical name resolution system (MDHT-based) and integrated caching functionality. Another
focus is on the NetInf API and on the inter-NetInf-node interface. The software contain browser
plugins and video streaming software.

Cl.
1

Cl.
2

Cl.
3

Cl.
4

Cl.
5

Cl.
6

Cl.
7

Cl.
8

Cl.
9

Cl.
10

Cl.
11

Cl.
12

Cl.
13

Cl.
14

Cl.
15

Cl.
16

Net 1.1.1.1

Router
1.1.1

Cache
1.1.1

Net 1.1.1

Net 1.1

Net 1

Net 1.1.2

Original
Server

MDHT
1*

Router
1.1

Router 1

MDHT
1*

Cache
1.1

Cache 1

MDHT 2

MDHT
2*

MDHT
2*

Cache
1.1.2

Net 1.1.2.1

Router
1.1.2

MDHT 1

Net 1.2.1.1

Router
1.2.1

Cache
1.2.1

Net 1.2.1

Net 1.2

Net 1.2.2

MDHT
3*

Router
1.2

MDHT
3*

Cache
1.2

MDHT 4

MDHT
4*

MDHT
4*

Cache
1.2.2

Net 1.2.2.1

Router
1.2.2

MDHT 3

Figure 2.44: OpenNetInf software

Global Information Network (GIN) GIN is a hybrid ICN architecture able to support both dis-
semination and conversational communication models. It uses a stateless packet-based forwarding
protocol, called GINP. GIN aims to interconnect NDOs over heterogeneous L3/L2 underlayers, in
the global network, by means of an integrated name-based resolution and routing mechanism.

GIN
ETH-IF

GIN
ETH-IF

GIN
ETH-IF

GIN
IPv4-IF

GIN
IPv6-IF

Forwarding Engine

NHT

Switch
Controller

RM
Routing
 Module

GIN Switch
GIN Internal-IF

PUT ResolverGET

App
App
App/Obj

Dictionary
DB

GIN
Dictionary

App
App
App/Obj

App
App
App/Obj

GPING

Figure 2.45: GIN software

SAIL Public 36

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

Android Client Software SAIL has also developed an implementation of the NetInf protocol for
the Android mobile OS. The implementation supports publishing or registering NDOs to NetInf
infrastructure, sharing NDOs over Bluetooth, and obtaining NDOs over HTTP or Bluetooth CLs.
The implementation reuses some components from OpenNetInf. It runs as an Android service and
provides a local HTTP-based API to applications so that many applications can benefit from NetInf
functionality.

Figure 2.46: Android client software

‘

SAIL Public 37

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

Appendices

Appendix A: Brochures

2013-02-13 SCALABLE & ADAPTIVE INTERNET SOLUTIONS

Information-Centric Networking (ICN) is a promising approach for evolving the Internet towards an
infrastructure that can provide an optimal service for accessing named data objects -- one of the
dominant applications today. In general, ICN is providing access to named data objects as a first class
networking primitive and is leveraging unique naming techniques and ubiquitous in-network caching to
provide more ecient and robust networking services than current approaches allow.
The Scalable and Adaptive Internet Solutions (SAIL) project has been developing the Network of
Information (NetInf) approach that is aiming at a highly scalable network architecture with particular
support for robustness and reliability as well as at multi-technology/multi-domain interoperability. SAIL
NetInf is putting particular emphasis on enabling networks that go beyond current de-facto architectures
for broadband/mobile access and data center networks. While we want to support those deployment
scenarios and their corresponding business requirements, we also want networks to go beyond inherited
telco constraints and assumptions.
For example, ICN can be made to work with the existing network infrastructure, name resolution and
security infrastructure -- but that does not mean that all ICN networks should depend on such
infrastructure. Instead, we want to leverage local, decentralised communication options to arrive at a
solution that is easy to deploy at small scale and is able to extend to global scale but still resilient against
network partitions, intermittent connectivity and potentially longer communication delays.
Likewise, ICN is often characterised as a generalised content distribution approach, but in fact, has
benefits beyond content distribution { for example, better security properties through Named Data Object
(NDO) security as well as better performance and robustness through in-network caching and localised
transport strategies.
We believe that NetInf's going beyond next-generation CDN approach will finally result in a network
that better accommodates current mass-market applications (for example for content distribution) and
future mass-market applications such as smart-object communications in constrained networks.
Key NetInf elements have been published as specifications, such as the NetInf protocol speciication [1]
— a conceptual specification of a NetInf Node-to-Node communication protocol that includes an object
model for Named Data Objects (NDOs), a detailed description of the Convergence Layer approach, as
well as the specification of HTTP and UDP Convergence Layers. The NetInf protocol work was driven by
the objective to build systems that actually work in a vari-ety of scenarios, and for that we have followed a
prototyping-driven approach. This led to a set of additional specifications such as the ni: naming format
[2] and different Convergence Layer specifications.
In the following, we are presenting different prototypes and evaluation scenarios that had been developed
by the SAIL project, illustrating different aspects of the NetInf system.

References
[1] D. Kutscher, S. Farrell, and E. Davies. The NetInf Protocol. Internet-Draft draft-kutscher-icnrg-netinf-
proto-00, Internet Engineering Task Force, October 2012. Work in progress.

[2] Stephen Farrell, Dirk Kutscher, Christian Dannewitz, Boerje Ohlman, and Phillip Hallam-Baker.
Naming Things With Hashes. Internet Draft draft-farrell-decade-ni, Work in progress, August 2012

Contact: Dirk Kutscher
 Dirk.Kutscher@neclab.eu

NetInf
The Network of Information

SAIL Public 38

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2013-02-13 SCALABLE & ADAPTIVE INTERNET SOLUTIONS

SAIL’s Network of Information evolves the Internet to directly support efficient content
distribution by introducing accessing uniquely named information as a core Internet principle.

Information-centric Network

Focus on
Accessing

named data objects
real world objects

Today’s Internet

Focus on
Conversations between Hosts

In today’s Internet,
accessing information is
the dominating use case!

NetInf Naming
 Identifying Named Data

Object

 Providing name-content
binding validation and other
security features

NetInf Transport
 Information-Centric

Internetwork and Transport
Protocols

 Convergence Layer
approach enabling migration
and network diversity

 Interdomain Communication
 Name-based Routing and

Name-Resolution Services

ICN-DFZ

A
B C D

E

F

G
HI

J

K

D

1 D

2

J1

J2

D2x

Name Resolution Service

ni://example.com/foo;YY
D

D2

D2x

Named object

ni://example.com/foo;YY

GET ni://example.com/foo;YY
Label stack: []

GET ni://example.com/foo;YY
Label stack: [J1]

Resolving

ni://example.com/foo;Y
Y
to

(D|D2|D2x)

GET ni://example.com/foo;YY
Hint: (D|D2|D2x)

Label stack: [J;J1]

GET ni://example.com/foo;YY
Hint: (D|D2|D2x)

Label stack: [D;J;J1]

GET ni://example.com/foo;YY
Hint: (D|D2|D2x)

Label stack: [D2;D;J;J1]

Vision

Approach Solutions

NetInf
The Network of Information

SAIL Public 39

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2013-02-13 SCALABLE & ADAPTIVE INTERNET SOLUTIONS

The$Event$with$Large$Crowd$(EwLC)$scenariohasbeen$chosen$asasuitable$scenario$for$demonstra;ng$the$benefits$

of$ NetInf$ over$ previous$ networking$ architectures.$ This$ demo$ will$ show$ how$ different$ partner$ prototypes$ fit$

togetherandare$integrated$to$create$a$consistent$NetInf$system$fortheEwLC$scenario,$and$then$outlinetheplans$

forafinal$demo$of$this$scenarioattheendoftheproject.$

$

The$ EwLC$ scenario$ targets$ situa;ons$when$ large$ crowds$ come$ together$ for$ a$ limited$ dura;on$ of$;me$ at$ some$

loca;onduetoapopular$event$occurring$such$asasports$event$or$outdoor$fes;val.$When$operators$dimension$

deploymentsofcellular$networks,$they$base$the$design$on$regular$demandsandloadonthe$network$during$peak$

hours.$There$is$however$a$limit$tohowmuch$capacity$canbeallocatedtoa$single$loca;on$(in$par;cularforradio$

communica;on$where$the$available$frequency$spectrum$isalimi;ng$factor),$and$operators$donotwanttospend$

more$money$on$deployments$thanistypically$required.$When$large$crowds$gather$inarela;vely$small$area$during$

a$rela;vely$short$period$of$;me$(ontheorderof tensofminutestohours),$ this$creates$a$very$high$ loadonthe$

cellular$network.$

$

Commonforall$these$scenariosisthat$they$occur$during$events$that$gathersalarge$crowd$interestedinaccessing$

data$from$the$network.$This$creates$a$demand$onthenetwork$that$is$higher$than$what$the$network$infrastructure$

is$dimensioned$for,$causing$the$user$experiencetodeteriorate.Asthe$people$inthecrowdarethereforthe$same$

event,$they$canbeexpectedtohave$similar$interests$that$drive$their$data$access$paJerns$(e.g.,$atafootball$match,$

itislikely$that$mostofthe$crowd$wanttoviewareplayofa$goal).$Thus,$there$are$great$poten;alforusing$NetInf$in$

this$scenario$as$NDOs$canbecached$close$to$users,$but$also$inthemobile$nodes$themselvestoserve$other$nearby$

mobile$nodes,$reducingtheloadof

the$ network.$ Addi;onally,$ user$ generated$ NDOs$ can$ be$ distributed$ either$ via$ infrastructure$ caches$ or$ via$ local$

peerMtoMpeer$communica;on$techniquestominimizeamobile$node's$outbound$bandwidth$consump;on.$

$

In$ this$ demo,wewill$ show$ an$ integra;on$ of$mul;ple$ partner$ prototypes$ into$ a$workig$ proofMofMconcept$ EwLC$

system.Inaddi;ontothe$required$NetInf$infrastructure$(rou;ng,$caching,$and$name$resolu;on),aNetInf$system$

for$Android$deviceshasbeen$ implemented,and three$endMuser$applica;onsare shown.$These$are$collabora;ve$

webMbrowsing,$photo$sharing$with$a$visual$content$directory,$and$video$streaming$over$the$NetInf$protocol.$

In$ addi;on,$ there$ is$ a$ visualsa;on$ server$ that$ makes$ it$ easier$ to$ see$ what$ is$ happening$ in$ the$ network.$ The$

visualiza;on$server$storesandanalyzes$no;fica;ons$relatedtoNetInf$node$signalling,anddisplaysthesignals$ in$

realM;me.Thesequenceofsignalscanalsobestepped$through$inanonMreal;me$display$mode.Thevisualiza;on$

server$ provides$ a$ network$ perspec;ve$ of$ the$ signalling$ between$ the$ NetInf$ nodes,$ as$ opposed$ to$ a$ tradi;onal$

protocol$analyzer,$which$only$providesalink$local$view.Thevisualiza;on$server$is$useful$bothfordebuggingand

demonstra;on$purposes.$

$

$

$

$

Contact: ((Anders(Lindgren((Börje(Ohlman(
((((andersl@sics.se (borje.ohlman@ericsson.com(

NetInf for Events with Large
Crowds

SAIL Public 40

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2013-02-13 SCALABLE & ADAPTIVE INTERNET SOLUTIONS

Events with Large Crowds (EwLC)
NetInf Demo Overview

SAIL Public 41

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2013-02-13 SCALABLE & ADAPTIVE INTERNET SOLUTIONS

NetInf for Events with Large
Crowds - Physical Node Demo

SAIL Public 42

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2013-02-13 SCALABLE & ADAPTIVE INTERNET SOLUTIONS

Overview$
NetInf$Live$Streaming$demo$forTheEvent$with$Large$Crowd$(EwLC)$scenario$has$some$key$benefits$of$NetInf$over$
previous$ networking$ architectures.$ This$ demo$ will$ show$ some$ of$ the$ benefits$ that$ makes$ NetInf$ a$ excellent$
plaQormforadMhoc$video$distribu;onaswellasan$alterna;ve$infrastructureforregular$media$broadcast.$Some$of$
thekeyfeatures$include:$
•  Any$node$canbethe$source$ofalive$stream$
•  No$advance$or$special$configura;onofthe$network$is$needed$as$NetInf$na;vely$supports$mul;cast$

func;onality$through$cachingandrequest$aggrega;on.$Flash$crowd$problemsarethus$avoided.$
•  Each$viewer$can$independently$choosetowatch$stream$live,orfromthebeginning.$Pausing/;meshiVing$the$

streamisalso$supported.$
•  Stream$chunks$canberetrieved$from$any$node$inap2p$fashion

Technical-detail$
Each$ stream$ is$ named$ by$ a$ stream$ iden;fier$ which$ is$ constructed$ by$ hashing$ the$ stream$ name$ (e.g.$ a$ human$
readable$filename).$The$chunk$namesareconstructedbyappendingthechunk$number$to$stream$id.Thechunks$
are$grouped$into$blocks$thataresigned.Theblock$size$is$recorded$inthemetadataoftheNDOiden;fiedbythe$
stream$ id$ (which$ also$ contains$ informa;on$ such$ latest$ produced$ chunk).$ The$ meta$ data$ of$ each$ chunk$ NDO$
containsthesigned$block$digestandthe$digests$oftheother$chunks$intheblock.$This$allowsforverifica;onofeach$
chunk$independently$immediately$when$received.Fordetails,see[1].$
$
Forausertoconnecttoa$stream:$
1.  Hashthenameofthe$stream$togetthe$stream$NDOID
2.  RequestthestreamNDO
3.  Decide$where$to$start$playingthestream.$

1.  Live:$chunk=current$
2.  Start:$chunk=1$
3.  Star;ng$from$minute$x:$chunk=x*(chunklength/min)$$

4.  Request$subsequent$chunks$$
$
Respondingtoa$stream$request:$
1.  When$responding$toaGET$request$forthestream$NDO,$thatNDOMUSTbemarkedasnonMcacheable.$
2.  When$ responding$ to$ a$ GET$ request$ for$ the$ streamMchunk$ NDO,$ that$ NDO$MUST$ NOT$ be$ marked$ as$ nonM

cacheable.$$
$
All$nodes$MUST$understand$the$nonMcacheable$marking.$There$isatradeMoff$between$the$block$sizeanddelay.The
larger$block$sizethelonger$delay$beforetheblockcanbe$transmiJed.$Ontheother$hand$the$larger$the$block$the$
less$processing$overhead$(and$delay)duetothesigning$process.$
$
$Contact:((Karl<Åke(Persson((((Börje(Ohlman(
((((karl<ake.persson@ericsson.com ((borje.ohlman@ericsson.com(

[1]$C.Wong,$S.$Lam,$Digital(Signatures(for(Flows(and(MulHcasts,$IEEE/ACM$TRANSACTIONSONNETWORKING,$VOL.$
7,$NO.$4,$AUGUST$1999].(

Events with Large Crowds –
NetInf Live Streaming demo

SAIL Public 43

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2013-02-13 SCALABLE & ADAPTIVE INTERNET SOLUTIONS

Events with Large Crowds –
NetInf Live Streaming demo

SAIL Public 44

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2013-02-13 SCALABLE & ADAPTIVE INTERNET SOLUTIONS

The NetInf Testbed runs on machines dedicated by the partners to execute a set of NetInf prototype nodes.
Targeting a large testbed running several hundreds of NetInf nodes, virtualizing nodes is the only feasible option.
Thus WPB created an lxc image that allows to run different configurations of the NEC NetInf Router Platform
(NNRP) along with a setup and configuration framework. Using this framework it is possible to deploy 50-150
interconnected nodes on a new machine and integrating them into the existing testbed. This should not take more
than 5min. The framework allows easy updates to the installed NNRP binaries.

At a high level the testbed consists of two tiers. The inner tier connects the different partner sites over the
Internet. Each sites is represented by one gateway node (GW) in this tier. The GWs primary task is to connect the
different partner sites. In the outer tier the partners can deploy their preferred configuration and use the GW
nodes to reach remote nodes and content. The suggested option is to connect the virtualized nodes running in a
machine via a dedicated access point (AP) to the GW. That way it is easy to add both new NetInf Testbed sites and
more machines to a specific site. To ensure reachability in the inner tier the TestBed relies on the Routing Hints
extension to NNRP (which has been developed by SICS, see also Routing Hints poster for more info).

At the moment the Testbed is configured with the EwLC emulation scenario in mind (see also EwLC emulation
Demo poster). For this all the nodes are not only connected to the AP, but also in adhoc groups with each other. To
make the EwLC scenario more realistic traffic shaping is used to emulate the bandwidth and delay of 3G and Adhoc
WLAN networks. The current configuration framework instantiates a configuration in which both the networks are
used and the in-network caching capabilities of NetInf are leveraged. Targeting the EwLC emulation we make the
following assumptions:
• Objects are published only on nodes and locators are forwarded to APs which store them
• APs and GW for caching and routing (Naming scheme reflects organizational context)
• APs fetch the object when matching a locator and serve object, instead of only returning the locator
• When a node receives a request it will first broadcast it in it Adhoc group (UDP, ½ sec timeout), and if

unsuccessful forward it to the AP.
• The AP in turn check his caches and locators and if that fails uses the routing hints to determine the nexthop.

This continues until the object is found.

To allow for centralized object publishing and inserting requests at dedicated nodes, the configuration framework
also features a control network that can be extended across different machines and sites using L2 tunnels (in our
case ssh).

Contact: Fabian Schneider. Andreas Ripke, Dirk Kutscher Bengt Ahlgren
 first.last@neclab.eu bengta@sics.se

NetInf Multi-partner Testbed
Configuration and Management

SAIL Public 45

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2013-02-13 SCALABLE & ADAPTIVE INTERNET SOLUTIONS

NetInf Multi-partner Testbed
Configuration and Management

Testbed Topology & Message passing mechanism

Single Location Setup

• Each site running
virtual network and
virtual nodes (lxc)

• NEC NetInf Router
Platform (NNRP)

• SICS Router Module
for NNRP

• Orange Transport
Module for NNRP

NEC

Internet

NNRP
GW

NNRP
AP1

NNRP
Nodes

NNRP
Nodes

ni.neclab.eu
10.1.1.???

ni.sics.se
10.1.2.???

ni.tilab.com
10.1.6.???

NNRP
Nodes

NNRP
AP2

NNRP
AP3

SICS NNRP
GW

NNRP
AP1

NNRP
Nodes

NNRP
Nodes

NNRP
AP2

TI
NNRP
GW

NNRP
Nodes

NNRP
AP1

Orange
NNRP
GW

NNRP
Nodes

NNRP
AP1

ni.orange.fr
10.1.8.???

EAB
NNRP
GW

NNRP
Nodes

NNRP
AP1

tbd
10.1.4.???

TCD
NNRP
GW

NNRP
Nodes

NNRP
AP1

ni.tcd.ie
10.1.3.???

You?
NNRP
GW

NNRP
Nodes

NNRP
AP1

ni.your.name
10.1.9.???

Message passing
using:

Locator publishing,
Adhoc broadcasting
& Last resort APs

Routing Hints with
fixed name prefix to
location mappings

NNRP GW

NNRP
AP1

sail.nlehd.de, 195.37.154.77
gw.ni.neclab.eu, 10.1.1.1

Internet

ap1.ni.
neclab.eu

10.1.1.2

10.1.1.1

10.1.1.12

3G Net:
10.3.11/24
(10.3.11.Y)

NNRP
AP2

ap2.ni.
neclab.eu

10.1.1.3

10.1.1.13

Ctrl Net:
10.222/16

(10.222.10.Y)
.1

Ctrl Net:
10.222/16

(10.222.11.Y).1
.1

Adhoc:
10.23.11/24
(10.23.11.Y)

NNRP
Nodes
nodeY
Y=[2,50]

Ctrl Net:
10.222/16

(10.222.12.Y).1
.1

Adhoc:
10.23.12/24
(10.23.12.Y)

NNRP
Nodes
nodeY
Y=[2,50]

3G Net:
10.3.12/24
(10.3.12.Y)

Network Underlay
NetInf Overlay

• Only GW
needs Internet
access

• GW can reside
on same
machine as
AP+Nodes

• One large L2
control network
connected via
tunnels (ssh)

NetInf GET Message Processing

Stop if any of the step yields the object:
1. Node checks local caches
2. Node broadcast request to adhoc network
3. Forward request to AP, await response

a) AP checks locator database
• On hit GET the object from locator,

put in cache and serve back
b) AP checks local caches
c) AP uses routing hint to locate next hop
• Can be another local AP or the GW

Current testbed was configured with EwLC use case in mind. Configuration can be changed for
different use cases
• Objects are published on nodes only; Locators are forwarded to APs
• APs and GW for caching and routing (Naming scheme reflects organizational context)
• APs fetch the object when matching a locator and serve object, instead of only returning the locator

Testbed operation assumptions

GET for ni://ap3.ni.neclab.eu/sha-256;;4….
1. Prefix resolves to 10.1.1.4
2. TI AP → nexthop is TI GW
3. TI GW → nexthop is NEC GW
4. NEC GW → nexthop is NEC AP3
5. NEC AP3 knows where to get the object local

Routing example Management Tools

• Scripts to start and stop virtual machines from
single lxc image → many nodes possible

• Scripts to configure lxc, NNRPs and network
on each machine

• Framework to publish and request objects and
query cache status

SAIL Public 46

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2013-02-13 SCALABLE & ADAPTIVE INTERNET SOLUTIONS

NetInf EwLC Emulation Demo
Caching & Adhoc networking
Benefits

Idea

• Emulating specific network setups to evaluate
NetInf protocol performance in different load
scenarios

• Motivation: running real code in controlled
environment for more meaningful and accurate
evaluation

• Event with Large Crowd: Many mobile NetInf
nodes connected to wireless infrastructure
network and enabled to communicate locally

• Configuring different mobility patterns,
publish/requests patterns, popularity distribution
etc.

Approach

Results

• Use the NetInf Testbed as execution platform
• NNRPs in LXC virtual machines, 50+ nodes per machine
• Multiple physical machines to scale up network
• Testbed APs correspond to BS, nodes to MN, GW for connectivity,

Remote location nodes serve as origin servers
• Emulate two networks per node + Control to issue request

• 3G: connecting all nodes of a BS, traffic shaped to 7.2Mbps/150ms
• Adhoc: connecting 8-12 nodes directly, traffic shaped to 54Mbps/2ms

• Script node behavior, request generation, communication link and
storage constraints to ensure reproducible experiments

• Collect performance measurements for real-time and offline evaluation
• (Not in demo) Mobility through changing Adhoc group memberships

• Significant offload potential
through ICN in-network
storage and NetInf local
communication

• Mobility can be a feature:
disseminating locally
generated or cached data
objects

• Live demo at SAIL NetInf
event

Lessons learned:

• NS3 is too slow to
emulate Adhoc WLAN
connectivity and/or
mobility for 20+ nodes

• NNRP can process
(relay) a request in
less than 20ms

• LXC very light-weight
and scalable

Contact: Fabian Schneider, Andreas Ripke, Dirk Kutscher
 first.last@neclab.eu

SAIL Public 47

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2013-02-13 SCALABLE & ADAPTIVE INTERNET SOLUTIONS

NetInf Global Routing
Using Hints
The global routing mechanism for the NetInf protocol makes use of two levels of aggregation in order to
achieve a high level of scalability. The mechanism is an adaptation of the Global Information Network
Architecture (GIN) [1] and Narayanan and Oran's ideas [2] to the NetInf protocol.
The mechanism is mainly concerned with the global aspects of routing requests for Named Data Objects
(NDOs) towards the corresponding publisher, i.e., routing in the NetInf default-free zone, comparable to the
current Internet's BGP-routed infrastructure. Just like in the current Internet, edge domains can utilise
different routing schemes that are adapted to particular needs of the respective domain.

NDO aggregation
Before going into the detailed design we briefly review the prerequisites. An ICN needs in principle to keep
track of all NDOs available in the global Internet, just like the current Internet in principle needs to keep
track of all hosts. Estimates of the number of objects range from 7 billion to one trillion (1012). To have
margin for growth, we need to aim higher, at least to 1015. The key to be able to globally route requests for
this large number of NDOs is aggregation.
We thus introduce the notion of NDO aggregation, meaning that a set of NDOs are grouped together. For
routing and forwarding purposes, the NDOs in an aggregate are then treated the same. Such NDO
aggregates, with the same origin, occur naturally in reality, for instance, chunks of a video, photos in a
collection, individual objects on a web page and/or site, and so on. NDO aggregation increases
performance in that a name resolution cost need only be taken for the first NDO of the aggregate. It
likewise increases scalability in that routing information is only needed for the aggregate as a whole. We
use the authority part of the ni: URI [3] to name NDO aggregates.

Components
The NetInf global routing scheme consists of:
Routing hint lookup service: a global name resolution system, that maps domain names from the ni: URI
authority field into a set of routing hints.
NetInf BGP routing system: for the NetInf routers in the default- free zone.
Routing hints: that aid global routing by providing aggregation for routing information.
Forwarding tables: in each NetInf router that maps ni: URI and/or routing hints into the address of the next
hop to forward the request to.

[1] Matteo D’Ambrosio, Paolo Fasano, Mario Ullio, and Vinicio Vercellone. The global information network
architecture. Technical Report TTGTDDNI1200009, Telecom Italia, 2012.
[2] A. Narayanan and D. Oran. Ndn and ip routing – can it scale? Presentation at ICN side meeting at 82nd
IETF, November 2011. http://trac.tools.ietf.org/group/irtf/trac/attachment/wiki/icnrg/IRTF
[3] Farrell, S., Kutscher, D., Dannewitz, C., Ohlman, B., Keranen, A., and P. Hallam-Baker, "Naming Things
with Hashes", draft-farrell-decade-ni-10 (work in progress), August 2012.

SAIL Public 48

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2013-02-13 SCALABLE & ADAPTIVE INTERNET SOLUTIONS

NetInf Global Routing
Using Hints

www.sail-project.eu

NDO aggregation and routing hints

• Adaptation of the Global Information Network
Architecture (GIN) and Narayanan and Oran’s
ideas to the NetInf protocol

• Aggregation of routing information key to scalability
• Named Data Objects (NDOs) are grouped into

aggregates
• NDO aggregates are mapped to routing hints

thought a lookup service (can be DNS)
• Multiple hints with priorities
• Global routing only needed for lowest priority hints

Example

Implementation:
• NEC NetInf Router Platform (NNRP)
• SICS Router Module for NNRP

Contact:
Bengt Ahlgren,
bengta@sics.se

• Routing hint lookup service
• NetInf BGP routing system for hints
• Forwarding tables at NetInf nodes – one or

both of ni: name table and routing hint table

Routing hint CL-specific next-hop
192.0.2.0 http://global.example.com/netinfproto/get
192.0.2.24 http://edge.example.com/netinfproto/get
10.1.10.1 http://local.example.com/netinfproto/get

• Check the object table (cached and
permanently served NDOs)

• Check ni: name forwarding table; if match,
forward to that next-hop

• If needed, perform lookup of routing hints
• Lookup all hints in routing hint forwarding

table; if match, forward to next-hop of hint with
highest priority

Components Forwarding process

J
Routing hint next-hop
D X

J1
Routing hint next-hop
Default J

X
Routing hint next-hop
D D

D2
Routing hint next-hop
D D
D2x D2x
Default D

ICN-DFZ

A
B C D

E

F
G

HI
J

K

D1
D2

J1

J2

D2x

Global Routing Hint
Lookup Service

abc.example.com
D,prio=1
D2,prio=2
D2x,prio=3

Named object
ni://abc.example.com/…;;XYZ

GET ni://abc.example.com/…;;XYZ

GET ni://abc.example.com/…;;XYZ

Resolving abc.example.com
to
(D,prio=1|D2,prio=2|D2x,prio=3)

GET ni://abc.example.com/…;;XYZ
Hint: (D,p=1|D2,p=2|D2x,p=3)

GET ni://abc.example.com/…;;XYZ
Hint: : (D,p=1|D2,p=2|D2x,p=3)

GET ni://abc.example.com/…;;XYZ
Hint: : (D,p=1|D2,p=2|D2x,p=3)

GET ni://abc.example.com/…;;XYZ
Hint: (D,p=1|D2,p=2|D2x,p=3)

X

D
Routing hint next-hop
D2 D2

Forwarding tables:

SAIL Public 49

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2013-02-13 SCALABLE & ADAPTIVE INTERNET SOLUTIONS

A NetInf Congestion
Control Protocol

SAIL Public 50

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2013-02-13 SCALABLE & ADAPTIVE INTERNET SOLUTIONS

Network caching of data retrieved from a server has been investigated both from a research and industry
perspective. From work in the early 90’s on web server caching, to more recent work (VoD file distribution and 3G
access networks) caching has become a viable solution within the network to save resources. In this
demonstration, we show how to cache objects in an Information Centric Network. The significant difference
between an ICN model and today’s networks is that each web object has a unique identifier that is used to create,
locate, distribute and verify the object. The overwhelming advantage is that the traditional client-server model can
be split allowing objects to moved, replicated, cached without an end-to- end connection. Additionally metadata
can be used to store attributes about the object. We leverage this architectural to design a new type of cache
management (or eviction) policy. We use the metadata field to store the hitrate of each object and compare this
field to the other cached items when deciding which object to replace as caches fill. We compare our approach,
called FMD, to LRU, LFU and random replacement policies.

We consider a hierarchy of caches in a tree structure with a source server at the top and clients requesting Nmaed
data Objects (NDO) at the leaves. The basic concept is to decouple the client-server approach by allowing ’self-
certifying’ objects to be be transported rather than the TCP bitstream for reliable traffic or the UDP datagrams in
unreliable transfers. Obviously, it is desirable to store highly popular content in caches close to the clients and less
popular NDOs higher up in the cache hierarchy in order to reduce overall latency and load on the network. We
assume that the caches have limited storage space and an eviction policy is applied.

We simulate a hierarchical infrastructure to determine which NDO’s to evict from a full cache when a new NDO is
visible to the cache. Two of the simplest and also most widely used policies are Least Frequently Used (LFU) and
Least Recently Used (LRU). The LFU selects the IO with the lowest hit rate while LRU evicts the IO that has not been
requested for the longest time.

A problem with LFU and LRU is that these policies tend to evict potentially popular content before they have an
opportunity to grow popular when storage space is small compared to the amount of IOs visible to the cache. To
mitigate this effect caches higher up in the hierarchy are provided with larger storage space. This, however, works
to a limited extent since the cache memory becomes to large and latency for searching the cache becomes
prohibitive. Ideally, the most popular content should be stored in the cache closest to the client while the next
popular content is stored at the next level in the cache hierarchy etc. Furthermore, one could argue that once
popular content has been distributed out to the caches close to the edge of the network this content could be
expunged from caches higher up the hierarchy to provide storage space for new content. To achieve this we
propose to attach meta-information about the popularity of the IO when it is sent from a source towards the
requesting client. The meta-information is updated at each cache and the updated meta-information is used by the
re-placement function. We call our proposal Forward Meta Data (FMD). At each cache on the path to the client the
meta data is examined and if the popularity of the IO is higher than the least popular content in the cache the Iois
replaced with the newly arrived IO.

We will show this dynamic behavior through a poster explanation and a demonstration based on a Java simulator.

Contact: Ian Marsh
Email: ianm@sics.se

Caching in a Network of
Informations (with visualisation)

SAIL Public 51

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2013-02-13 SCALABLE & ADAPTIVE INTERNET SOLUTIONS

Caching in a Network of
Information (with visualisation)

SAIL Public 52

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2013-02-13 SCALABLE & ADAPTIVE INTERNET SOLUTIONS

Netinf:

Using DTN and Nilib

SAIL Public 53

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2013-02-13 SCALABLE & ADAPTIVE INTERNET SOLUTIONS

Netinf:

Using DTN and Nilib
The NetInf DTN Convergence Layer
The NetInf Protocol [1] adopts a Convergence Layer (CL) architecture that allows Named Data Objects

(NDOs) to be transported between pairs of nodes using a CL protocol that is chosen for the nodes’ network

domain. The NetInf protocol is well-suited for moving NDOs across disparate domains using gateways at the

domain boundaries where they choose a CL protocol for the next transport hop: an incoming request using

(say) the HTTP convergence layer in the well-connected Internet could be forwarded into a domain where

Delay- and Disruption Tolerant Networking (DTN) is appropriate.

The work represented by this demonstration shows how a NetInf CL can be implemented on top of the DTN

Bundle Protocol (BP) using the Bundle Protocol Query Extension Block (BPQ block) developed during the

SAIL project to carry the NetInf specific information [3] in conjunction with Metadata Extension blocks.

The DTN architecture supported by the BP [4] is described as a ‘store, carry and forward’ so that all DTN

nodes already support a cache for bundles that are in process of forwarding by the BP. Unlike conventional

routers, these copies are not necessarily transient but may be held for extended periods of time to allow for

the delays and disruptions foreseen in a DTN environment. During the SAIL project we have added

functionality to the DTN2 bundle protocol agent (BPA) daemon (‘dtnd’) that uses the information in the BPQ

block of bundles carrying NetInf requests to either ‘publish’ an NDO by retaining the content in its cache or

create a response to a ‘get’ request from this cache when the NDO name matches with the NetInf request

parameter.

HTTP↔DTN CL Gateway

In addition to the HTTP CL components in the NetInf Nilib OSS, the repository now includes extensions to the

standalone NetInf server that accept NetInf protocol messages carried over the DTN CL together with

extended applications that can select the CL to use according to the format of locator hints provided.

NetInf DTN Device and FUSE NetInf Cache Access Component
Computers used in the demonstration as DTN nodes are setup to manage external data access as far as

possible using only NetInf access over the DTN BP. NDOs cached by the DTN BPA (dtnd) on these nodes

can be read using their ni URIs as file names through a FUSE filesystem. Local applications can write files

into this filing system which will be automatically published as they are completed (‘closed’) and will then be

accessible either via the correct ni URI name or the local name used when they were created.

NetInf NiLib Python Performance Test Harness
Nilib [7] is a set of open-source (Apache licensed) implementations of the NetInf Protocol developed as part of

the SAIL project with various language bindings including C, PHP, Python, Ruby and Java. We use the

Python client and Apache server implementation for this, and are developing a set of tools that will enable

comparisons between NetInf protocol implementations and network designs, but can also be used to

compare different ICN approaches. The basic approach is to have a standard corpus [8] and to develop

tooling and measurements to enable the above comparisons to be made and to be independently replicated.

We plan to continue this work within the IRTF ICN research group. We will demonstrate and discuss this

early-stage work.

References
[1] D. Kutscher, S. Farrell, and E. Davies. The NetInf Protocol. Internet-Draft

draft-kutscher-icnrg-netinf-proto, Oct 2012. Work in progress.

[2] K. Scott and S. Burleigh, Bundle Protocol Specification. RFC 5050, IETF, November 2007.

[3] S. Farrell, A. Lynch, D. Kutscher and A. Lindgren, Bundle Protocol Query Extension Block,

draft-irtf-dtnrg-bpq, IETF, May 2012. Work in progress.

[4] V. Cerf, et al. Delay-Tolerant Networking Architecture, RFC 4838, IETF, April 2007.

[6] http://sourceforge.net/projects/dtn

[6] FUSE Filessystem in Userspace: http://fuse.sourceforge.net/

[7] http://sourceforge.net/projects/netinf/

[8] http://www.soschildrensvillages.org.uk/about-our-charity/archive/2008/10/2008-wikipedia-for-schools

SAIL Public 54

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2013-02-13 SCALABLE & ADAPTIVE INTERNET SOLUTIONS

GIN (Global Information Network) is a hybrid architecture able to support both dissemination and conversational
communication models. It uses a stateless packet-based forwarding protocol, called GINP (GIN Protocol). GIN aims
to interconnect Named Data Objects (NDOs) over heterogeneous L3/L2 underlayers, in the global network, by
means of an integrated name-based resolution and routing mechanism. Data are routed by names into the GIN
network on a double path: the resolution path is used to route initial GET requests to one or more destinations
through a chain of Dictionary nodes integrated in the network infrastructure and arranged according to some
hierarchical scheme embedding topological properties (e.g. content locality, locality of resolutions and routing
paths), such as the Multilevel Distributed Hash Tables (MDHT) architecture [5]. Each object request initiates a
direct communication session between the requesting entity and the object source(s). Data packets in the
communication sessions are routed on the shortest path with fast lookups in the node Next Hop Table (NHT).

Telecom Italia has developed a proof-of-concept prototype of a GIN infrastructure node. The current GIN demo
prototype provides the following features and services:

• name based routing and forwarding over heterogeneous networks (IPv4, IPv6, ETH);

• integrated name resolution by means of a distributed MDHT dictionary;

• in-network registration and storage of named objects;

• multicast ping of named objects (called gping);

• end-to-end receiver-based multipath retrieval of named objects;

• support for search of data objects by keywords and names by means of a simple search engine.

The GIN node, developed on FreeBSD, consists of two subsystems: the GIN Switch and the GIN Dictionary.

The GIN Switch is implemented with a multithreaded program in C language. In the current software release, a set
of line commands is provided to manage and configure a GIN node. In particular, it is possible: to enable GINP over
Ethernet, IPv4 and IPv6; to add, delete, print GINP static routes; to shape GIN interfaces, to print or reset GIN
interface counters; etc.

The GIN Dictionary is implemented in PHP language and runs over an Apache HTTP server providing proxy services.
The GIN Dictionary is composed of a Dictionary DB, holding bindings for registered object IDs, and three main
modules:

• the "Resolver" module handles resolutions for GINP packets and multicast GIN echo requests (called gpings).

• the "PUT" module implements the registration protocol (client and server side).

• the "GET" module implements reliable end-to-end multisource retrieval protocol (client and server side).

A network testbed of virtual GIN prototype nodes has been setup on a VMware platform. The testbed provides
access for GIN services to legacy IP clients from Internet, by means of a web server configured over each GIN node.
In the testbed, several GIN nodes are interconnected through different underlayers (IPv4, IPv6 and Ethernet) and
no IP connectivity is provided end-to-end. GIN Protocol (GINP) packets flow seamlessly over different underlayers.
GINP provides the common network communication level. Client data objects can be stored in GIN access nodes,
and near object copies can be retrieved and gpinged from the GIN access nodes, showing locality and anycast
behavior.

Current prototype software and documentation have been publicly released and are available on GIN web site
http://gin.ngnet.it . Future work comprises several activities, including: implementation of a GIN client,
demonstration of mobility and real-time traffic support, implementation of dynamic name-based routing and
MDHT, evaluation of a possible Software Defined Networking (SDN) approach (with the GIN Switch implemented in
the data plane and the GIN Dictionary in the control plane).

Contact: Matteo D’Ambrosio
 matteo.dambrosio@telecomitalia.it

GIN: A Global Information Network
for NetInf

SAIL Public 55

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2013-02-13 SCALABLE & ADAPTIVE INTERNET SOLUTIONS

GIN: A Global Information Network
for NetInf

SAIL Public 56

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2013-02-13 SCALABLE & ADAPTIVE INTERNET SOLUTIONS

GIN Prototype
A NetInf Proof-of-Concept of the
Global Information Network

SAIL Public 57

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2013-02-13 SCALABLE & ADAPTIVE INTERNET SOLUTIONS

SAIL has developed a rich set of prototype implementations of the NetInf protocol and corresponding
applications. A significant fraction of these implementations have been released under Open Source
Software licenses and are used by the ICN community for experiments and new research activities.

NetInf Software on SourceForge
The SAIL project has released an open-source (subject to the Apache v.2 license) set of tools for NetInf.
These implement various aspects of the NetInf protocol in different languages. At the time of writing,
there are C, Python, PHP: Ruby, Clojure and Java implementations with the Python, Puby and PHP code
having seen the most development so far.

OpenNetInf
The OpenNetInf prototype [36] building on and extending earlier work from the 4WARD project.. The
OpenNetInf implementation is a proof-of-concept implementation of the major NetInf elements, including
the NetInf API, inter-NetInf-node interface, information model, naming concepts, security concepts, name
resolution, caching, and data transfer. The goal is to evaluate the major NetInf design decisions and the
overall NetInf architecture in practice. OpenNetInf contains a hierarchical name resolution system
(MDHT-based) and ntegrated caching functionality. Another focus is on the NetInf API and on the inter-
NetInf-node interface. The software contain browser plugins and video streaming software.

Global Information Network (GIN)
GIN is a hybrid ICN architecture able to support both dissemination and conversational communication
models. It uses a stateless packet-based forwarding protocol, called GINP (GIN Protocol). GIN aims to
interconnect Named Data Objects (NDOs) over heterogeneous L3/L2 underlayers, in the global network,
by means of an integrated name-based resolution and routing mechanism.

Android Client Software
SAIL has also developed an implementatio of the NetInf protocol for the Android mobile OS. The
implementation supports publishing or registering Named Data Objects (NDOs) NDOs to NetInf
infrastructure, sharing NDOs over Bluetooth, and obtaining NDOs over HTTP or Bluetooth Convergence
Layers (CLs). The implementation reuses some components from OpenNetInf. It runs as an Android
service and provides a local HTTP-based API to applications so that many applications can benefit from
NetInf functionality,

Contact: Dirk Kutscher
 Dirk.Kutscher@neclab.eu

NetInf
Open Source Software

SAIL Public 58

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2013-02-13 SCALABLE & ADAPTIVE INTERNET SOLUTIONS

NetInf Software

http://sourceforge.net/projects/netinf/

• NetInf protocol stacks, routers, and applications
• Implements Naming Things with Hashes

• draft-farrell-decade-ni

• Implements NetInf protocol and HTTP + UDP
Convergence Layers

• draft-kutscher-icnrg-netinf-protocol

• C, Clojure, Java, Python, Ruby

OpenNetInf

Cl.
1

Cl.
2

Cl.
3

Cl.
4

Cl.
5

Cl.
6

Cl.
7

Cl.
8

Cl.
9

Cl.
10

Cl.
11

Cl.
12

Cl.
13

Cl.
14

Cl.
15

Cl.
16

Net 1.1.1.1

Router
1.1.1

Cache
1.1.1

Net 1.1.1

Net 1.1

Net 1

Net 1.1.2

Original
Server

MDHT
1*

Router 1.1

Router 1

MDHT
1*

Cache
1.1

Cache 1

MDHT 2

MDHT
2*

MDHT
2*

Cache
1.1.2

Net 1.1.2.1

Router
1.1.2

MDHT 1

Net 1.2.1.1

Router
1.2.1

Cache
1.2.1

Net 1.2.1

Net 1.2

Net 1.2.2

MDHT
3*

Router 1.2

MDHT
3*

Cache
1.2

MDHT 4

MDHT
4*

MDHT
4*

Cache
1.2.2

Net 1.2.2.1

Router
1.2.2

MDHT 3

Le
ve

l 1
Le

ve
l 2

Le
ve

l 3
Le

ve
l 4

• NetInf Name Resolution
• Multi-Level DHT (MDHT)
• Hierachical SkipNet (HSkip)

• Applications and Browser-Plugins for web
access and video streaming

• InFox, InBird, Android client

http://code.google.com/p/opennetinf/
Global Information Network

Android Client Software

Dictionary

If-1

If-2

If-3

If-4

If-5

If-6

If-7

If-8

L3/L2
MDHT

OK

OK

NO

NO

GINP* dataGINP* dataL3/L2

Discard

GINP
Name Resolution and ForwardingIN

OUT

GINP provides
Resolution&Routing
at the Name Layer

GINPdata

Resolution
Path

~5% Traffic

Fast
Path

~95% Traffic

NO

OK: a match is found
NO: no match

OK

GINPdata L3/L2

Next Hop
Table

• Hybrid networking architecture for ICN
• Host-centric and information-centric communications

• Interconnecting Information Objects, addressed
by user-level names

• Supporting any user-level naming scheme

• Packet-based Name Networking Layer
• Forwarding data by name in the global Internet, in

packets over L2/L3 heterogeneous sublayers

http://gin.ngnet.it

• Implementation of NetInf protocol for Android mobile OS
• Publish or register NDOs with NiProxy
• Share NDOs over Bluetooth
• Get NDOs over HTTP or Bluetooth CL
• Reuses some components from OpenNetInf
• Runs as Android service and provides HTTP-based local API to

applications
• Allows anyone to create a NetInf-enabled Android app

NetInf
Open Source Software

SAIL Public 59

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

List of Abbreviations, Acronyms, and
Definitions

ADU Application Data Unit

AP Access Point

BPQ Bundle Protocol Query

BP Bundle Protocol

BPA Bundle Protocol Agent

BS Base Station

CDN Content Delivery Network

CL Convergence Layer

DHT Distributed Hash Table

DTN Delay- and Disruption-Tolerant Networking

EwLC Event with Large Crowds

FMD Forward Meta Data

GIN Global Information Network

GINP Global Information Network Protocol

GW Gateway

HTTP Hypertext Transfer Protocol

ICN Information-Centric Networking

IO Information Object

IP Internet Protocol

LFU Least Frequently Used

LRR Least Requested Rate

LRU Least Recently Used

LXC Linux Container

MDHT Multilevel DHT

MN Mobile Node

SAIL Public 60

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

NDO Named Data Object

NHT Next Hop Table

NNRP NEC NetInf Router Platform

NRS Name Resolution System

NetInf Network of Information

P2P Peer-to-Peer

RND Random

SAIL Scalable and Adaptive Internet Solutions

SDN Software Defined Networking

SSH Secure SHell

URI Uniform Resource Identifier

VoD Video on Demand

SAIL Public 61

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

List of Figures

2.1 Vision: Moving towards ICN . 2
2.2 NetInf approach . 3
2.3 EwLC demo . 4
2.4 Commuter train . 5
2.5 Stadion scenario . 5
2.6 EwLC demo visualization . 5
2.7 Physical Node Demo setup . 6
2.8 NNRP message processing . 6
2.9 EwLC demo UIs . 7
2.10 Streaming demo . 9
2.11 Block signing process . 10
2.12 Testbed topology . 11
2.13 Single Location Setup . 12
2.14 EwLC environment . 13
2.15 Emulation results (left: CDF of response times, right: network load) from first round

of requests (see scenario description step 2). All requests are served from content
originator in remote stadium (blue area). 15

2.16 Emulation results (left: CDF of response times, right: network load) from second
round of requests (see scenario description step 3.a). Most requests are served from
the AP cache (yellow area) and few are served locally from other nodes in the adhoc
group (green area). That downloaded the object before. 16

2.17 Emulation results (left: CDF of response times, right: network load) from last round
of requests (see scenario description step 3.c). Most requests are served locally from
other nodes in the adhoc group (green area) . 16

2.18 Routing hint example . 17
2.19 Forwarding table example . 18
2.20 Routing hints usage example . 18
2.21 Chunking and Congestion Control Protocol . 20
2.22 NetInf Congestion Control Protocol Testbed . 20
2.23 Measurements on the Congestion Control Protocol 21
2.24 Tree-like structure . 22
2.25 Popularity distribution . 23
2.26 Document ranking . 23
2.27 Cache hierarchy and occupancy (top), Orange networks trace file (bottom) 24
2.28 DTN scenario . 26
2.29 NetInf ICN device . 26
2.30 Network diagram of the “summer trial" . 28
2.31 GIN node . 29
2.32 GIN prototype architecture . 30
2.33 GIN testbed setup . 31
2.34 Protocol stack of the GIN Architecture . 32
2.35 GIN forwarding and resolution . 32

SAIL Public 62

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

2.36 Registration and upload . 33
2.37 Resolution . 34
2.38 Retrieval . 34
2.39 Experiment setup . 34
2.40 Download times as a function of the bottleneck rate and number of sources 34
2.41 Download bandwidth as a function of the bottleneck rate 35
2.42 Bandwidth utilization on the download link . 35
2.43 NetInf software . 35
2.44 OpenNetInf software . 36
2.45 GIN software . 36
2.46 Android client software . 37

SAIL Public 63

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

Bibliography

[1] SAIL Project. The network of information: Architecture and applications. Deliverable D-3.1,
SAIL EU FP7 Project, 2011. FP7-ICT-2009-5-257448/D-3.1.

[2] SAIL Project. NetInf content delivery and operations (D.B.2). Deliverable D-3.2, SAIL EU
FP7 Project, 2012. FP7-ICT-2009-5-257448/D-3.2.

[3] SAIL Project. Final NetInf architecture (D.B.3). Deliverable D-3.3, SAIL EU FP7 Project,
2013. FP7-ICT-2009-5-257448/D-3.3.

[4] D. Kutscher, S. Farrell, and E. Davies. The NetInf Protocol. Internet-Draft draft-kutscher-
icnrg-netinf-proto-00, Internet Engineering Task Force, October 2012. Work in progress.

[5] S. Farrell, D. Kutscher, C. Dannewitz, B. Ohlman, A. Keranen, and P. Hallam-Baker. Naming
Things with Hashes. Internet-Draft draft-farrell-decade-ni-10, Internet Engineering Task Force,
August 2012. Work in progress.

[6] C.Wong and S. Lam. Digital Signatures for Flows and Multicasts. In IEEE/ACM TRANSAC-
TIONS ON NETWORKING, VOL. 7, NO. 4,, Toronto, Canada, 1999.

[7] Matteo D. Ambrosio, Paolo Fasano, Mario Ullio, and Vinicio Vercellone. The global information
network architecture. Technical Report TTGTDDNI1200009, Telecom Italia, 2012.

[8] A. Narayanan and D. Oran. Ndn and ip routing - can it scale.
Presentation at ICN side meeting at 82nd IETF, November 2011.
http://trac.tools.ietf.org/group/irtf/trac/attachment/wiki/icnrg/IRTF.

[9] G. Carofiglio, M. Gallo, and L. Muscariello. Icp: Design and evaluation of an interest control
protocol for content-centric networking. In Computer Communications Workshops (INFOCOM
WKSHPS), 2012 IEEE Conference on, pages 304 –309, march 2012.

[10] G. Carofiglio, M. Gallo, and L. Muscariello. Multipath congestion control in content-centric
networks. In IEEE INFOCOM NOMEN 2013 (to appear).

[11] Cisco visual networking index: Forecast and methodology, 2010-2015, June 2011.

[12] John Ardelius, Björn Grönvall, Lars Westberg, and Åke Arvidsson. On the effects of caching
in access aggregation networks. Technical report, Swedish Institute of Computer Science, SICS
and Ercisson Research, 2012. In submission.

[13] K. Scott and S. Burleigh. Bundle Protocol Specification. RFC 5050, Internet Engineering Task
Force, November 2007.

[14] S. Farrell, A. Lynch, D. Kutscher, and A. Lindgren. Bundle Protocol Query Extension Block.
Internet-Draft draft-irtf-dtnrg-bpq-00, Internet Engineering Task Force, May 2012. Work in
progress.

[15] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall, and H. Weiss.
Delay-Tolerant Networking Architecture. RFC 4838, Internet Engineering Task Force, April
2007.

SAIL Public 64

Document: FP7-ICT-2009-5-257448-SAIL/D.B.4
Date: 2013-03-07 Security: Public
Status: Final Version Version: 1.1

[16] 4WARD Consort. 4WARD – Architecture and design for the future Internet, 2008.

SAIL Public 65

	Executive Summary
	Introduction
	Live Event Prototypes
	NetInf Overview
	NetInf for Events with Large Crowds
	NetInf Demo Overview
	Physical Node Demo

	NetInf Multi-partner Testbed Configuration and Management
	NetInf EwLC Emulation Demo Caching & Adhoc networking Benefits
	NetInf Global Routing Using Hints
	NetInf Congestion Control Protocol
	Caching in a Network of Information (with visualization)
	Principle
	Philosophy
	Visualisation

	NetInf: Using DTN with Nilib
	GIN: A Global Information Network for NetInf
	Architecture
	Demo

	NetInf Open Source Software

	Appendices
	Appendix A: Brochures

	List of Acronyms
	List of Figures
	Bibliography

